"vscode:/vscode.git/clone" did not exist on "1a57e4167915780c9ba458ff6f3ad5a18e048ee4"
_misc.py 10.5 KB
Newer Older
1
import math
2
from typing import List, Optional
3

4
import PIL.Image
5
import torch
6
from torch.nn.functional import conv2d, pad as torch_pad
7

8
from torchvision import datapoints
9
from torchvision.transforms._functional_tensor import _max_value
10
from torchvision.transforms.functional import pil_to_tensor, to_pil_image
11

12
13
from torchvision.utils import _log_api_usage_once

14
from ._utils import _get_kernel, _register_explicit_noop, _register_kernel_internal, _register_unsupported_type
15

16

17
18
19
@_register_explicit_noop(datapoints.BoundingBoxes, datapoints.Mask)
@_register_unsupported_type(PIL.Image.Image)
def normalize(
20
    inpt: torch.Tensor,
21
22
23
24
    mean: List[float],
    std: List[float],
    inplace: bool = False,
) -> torch.Tensor:
25
    if torch.jit.is_scripting():
26
        return normalize_image_tensor(inpt, mean=mean, std=std, inplace=inplace)
27
28
29
30
31

    _log_api_usage_once(normalize)

    kernel = _get_kernel(normalize, type(inpt))
    return kernel(inpt, mean=mean, std=std, inplace=inplace)
32
33


34
@_register_kernel_internal(normalize, torch.Tensor)
35
@_register_kernel_internal(normalize, datapoints.Image)
36
37
38
39
40
41
42
def normalize_image_tensor(
    image: torch.Tensor, mean: List[float], std: List[float], inplace: bool = False
) -> torch.Tensor:
    if not image.is_floating_point():
        raise TypeError(f"Input tensor should be a float tensor. Got {image.dtype}.")

    if image.ndim < 3:
43
        raise ValueError(f"Expected tensor to be a tensor image of size (..., C, H, W). Got {image.shape}.")
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

    if isinstance(std, (tuple, list)):
        divzero = not all(std)
    elif isinstance(std, (int, float)):
        divzero = std == 0
    else:
        divzero = False
    if divzero:
        raise ValueError("std evaluated to zero, leading to division by zero.")

    dtype = image.dtype
    device = image.device
    mean = torch.as_tensor(mean, dtype=dtype, device=device)
    std = torch.as_tensor(std, dtype=dtype, device=device)
    if mean.ndim == 1:
        mean = mean.view(-1, 1, 1)
    if std.ndim == 1:
        std = std.view(-1, 1, 1)

    if inplace:
        image = image.sub_(mean)
    else:
        image = image.sub(mean)

    return image.div_(std)
69

70

71
@_register_kernel_internal(normalize, datapoints.Video)
72
73
74
75
def normalize_video(video: torch.Tensor, mean: List[float], std: List[float], inplace: bool = False) -> torch.Tensor:
    return normalize_image_tensor(video, mean, std, inplace=inplace)


76
@_register_explicit_noop(datapoints.BoundingBoxes, datapoints.Mask)
77
def gaussian_blur(inpt: torch.Tensor, kernel_size: List[int], sigma: Optional[List[float]] = None) -> torch.Tensor:
78
    if torch.jit.is_scripting():
79
        return gaussian_blur_image_tensor(inpt, kernel_size=kernel_size, sigma=sigma)
80
81
82
83
84

    _log_api_usage_once(gaussian_blur)

    kernel = _get_kernel(gaussian_blur, type(inpt))
    return kernel(inpt, kernel_size=kernel_size, sigma=sigma)
85
86


87
def _get_gaussian_kernel1d(kernel_size: int, sigma: float, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
88
    lim = (kernel_size - 1) / (2.0 * math.sqrt(2.0) * sigma)
89
    x = torch.linspace(-lim, lim, steps=kernel_size, dtype=dtype, device=device)
90
    kernel1d = torch.softmax(x.pow_(2).neg_(), dim=0)
91
92
93
94
95
96
    return kernel1d


def _get_gaussian_kernel2d(
    kernel_size: List[int], sigma: List[float], dtype: torch.dtype, device: torch.device
) -> torch.Tensor:
97
98
    kernel1d_x = _get_gaussian_kernel1d(kernel_size[0], sigma[0], dtype, device)
    kernel1d_y = _get_gaussian_kernel1d(kernel_size[1], sigma[1], dtype, device)
99
100
101
102
    kernel2d = kernel1d_y.unsqueeze(-1) * kernel1d_x
    return kernel2d


103
@_register_kernel_internal(gaussian_blur, torch.Tensor)
104
@_register_kernel_internal(gaussian_blur, datapoints.Image)
105
def gaussian_blur_image_tensor(
106
    image: torch.Tensor, kernel_size: List[int], sigma: Optional[List[float]] = None
107
) -> torch.Tensor:
108
    # TODO: consider deprecating integers from sigma on the future
109
110
    if isinstance(kernel_size, int):
        kernel_size = [kernel_size, kernel_size]
111
    elif len(kernel_size) != 2:
112
113
114
115
        raise ValueError(f"If kernel_size is a sequence its length should be 2. Got {len(kernel_size)}")
    for ksize in kernel_size:
        if ksize % 2 == 0 or ksize < 0:
            raise ValueError(f"kernel_size should have odd and positive integers. Got {kernel_size}")
116

117
118
    if sigma is None:
        sigma = [ksize * 0.15 + 0.35 for ksize in kernel_size]
119
120
121
122
123
124
125
126
127
128
129
130
131
    else:
        if isinstance(sigma, (list, tuple)):
            length = len(sigma)
            if length == 1:
                s = float(sigma[0])
                sigma = [s, s]
            elif length != 2:
                raise ValueError(f"If sigma is a sequence, its length should be 2. Got {length}")
        elif isinstance(sigma, (int, float)):
            s = float(sigma)
            sigma = [s, s]
        else:
            raise TypeError(f"sigma should be either float or sequence of floats. Got {type(sigma)}")
132
133
134
    for s in sigma:
        if s <= 0.0:
            raise ValueError(f"sigma should have positive values. Got {sigma}")
135

136
137
138
    if image.numel() == 0:
        return image

139
    dtype = image.dtype
140
    shape = image.shape
141
142
143
144
    ndim = image.ndim
    if ndim == 3:
        image = image.unsqueeze(dim=0)
    elif ndim > 4:
145
        image = image.reshape((-1,) + shape[-3:])
146

147
148
149
    fp = torch.is_floating_point(image)
    kernel = _get_gaussian_kernel2d(kernel_size, sigma, dtype=dtype if fp else torch.float32, device=image.device)
    kernel = kernel.expand(shape[-3], 1, kernel.shape[0], kernel.shape[1])
150

151
    output = image if fp else image.to(dtype=torch.float32)
152
153
154

    # padding = (left, right, top, bottom)
    padding = [kernel_size[0] // 2, kernel_size[0] // 2, kernel_size[1] // 2, kernel_size[1] // 2]
155
156
    output = torch_pad(output, padding, mode="reflect")
    output = conv2d(output, kernel, groups=shape[-3])
157

158
159
160
    if ndim == 3:
        output = output.squeeze(dim=0)
    elif ndim > 4:
161
        output = output.reshape(shape)
162

163
164
165
    if not fp:
        output = output.round_().to(dtype=dtype)

166
    return output
167
168


169
@_register_kernel_internal(gaussian_blur, PIL.Image.Image)
170
def gaussian_blur_image_pil(
171
    image: PIL.Image.Image, kernel_size: List[int], sigma: Optional[List[float]] = None
172
) -> PIL.Image.Image:
173
    t_img = pil_to_tensor(image)
174
    output = gaussian_blur_image_tensor(t_img, kernel_size=kernel_size, sigma=sigma)
175
    return to_pil_image(output, mode=image.mode)
176
177


178
@_register_kernel_internal(gaussian_blur, datapoints.Video)
179
180
181
def gaussian_blur_video(
    video: torch.Tensor, kernel_size: List[int], sigma: Optional[List[float]] = None
) -> torch.Tensor:
182
    return gaussian_blur_image_tensor(video, kernel_size, sigma)
183
184


185
@_register_unsupported_type(PIL.Image.Image)
186
def to_dtype(inpt: torch.Tensor, dtype: torch.dtype = torch.float, scale: bool = False) -> torch.Tensor:
187
188
189
190
191
192
193
    if torch.jit.is_scripting():
        return to_dtype_image_tensor(inpt, dtype=dtype, scale=scale)

    _log_api_usage_once(to_dtype)

    kernel = _get_kernel(to_dtype, type(inpt))
    return kernel(inpt, dtype=dtype, scale=scale)
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210


def _num_value_bits(dtype: torch.dtype) -> int:
    if dtype == torch.uint8:
        return 8
    elif dtype == torch.int8:
        return 7
    elif dtype == torch.int16:
        return 15
    elif dtype == torch.int32:
        return 31
    elif dtype == torch.int64:
        return 63
    else:
        raise TypeError(f"Number of value bits is only defined for integer dtypes, but got {dtype}.")


211
@_register_kernel_internal(to_dtype, torch.Tensor)
212
@_register_kernel_internal(to_dtype, datapoints.Image)
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
def to_dtype_image_tensor(image: torch.Tensor, dtype: torch.dtype = torch.float, scale: bool = False) -> torch.Tensor:

    if image.dtype == dtype:
        return image
    elif not scale:
        return image.to(dtype)

    float_input = image.is_floating_point()
    if torch.jit.is_scripting():
        # TODO: remove this branch as soon as `dtype.is_floating_point` is supported by JIT
        float_output = torch.tensor(0, dtype=dtype).is_floating_point()
    else:
        float_output = dtype.is_floating_point

    if float_input:
        # float to float
        if float_output:
            return image.to(dtype)

        # float to int
        if (image.dtype == torch.float32 and dtype in (torch.int32, torch.int64)) or (
            image.dtype == torch.float64 and dtype == torch.int64
        ):
            raise RuntimeError(f"The conversion from {image.dtype} to {dtype} cannot be performed safely.")

        # For data in the range `[0.0, 1.0]`, just multiplying by the maximum value of the integer range and converting
        # to the integer dtype  is not sufficient. For example, `torch.rand(...).mul(255).to(torch.uint8)` will only
        # be `255` if the input is exactly `1.0`. See https://github.com/pytorch/vision/pull/2078#issuecomment-612045321
        # for a detailed analysis.
        # To mitigate this, we could round before we convert to the integer dtype, but this is an extra operation.
        # Instead, we can also multiply by the maximum value plus something close to `1`. See
        # https://github.com/pytorch/vision/pull/2078#issuecomment-613524965 for details.
        eps = 1e-3
        max_value = float(_max_value(dtype))
        # We need to scale first since the conversion would otherwise turn the input range `[0.0, 1.0]` into the
        # discrete set `{0, 1}`.
        return image.mul(max_value + 1.0 - eps).to(dtype)
    else:
        # int to float
        if float_output:
            return image.to(dtype).mul_(1.0 / _max_value(image.dtype))

        # int to int
        num_value_bits_input = _num_value_bits(image.dtype)
        num_value_bits_output = _num_value_bits(dtype)

        if num_value_bits_input > num_value_bits_output:
            return image.bitwise_right_shift(num_value_bits_input - num_value_bits_output).to(dtype)
        else:
            return image.to(dtype).bitwise_left_shift_(num_value_bits_output - num_value_bits_input)


# We encourage users to use to_dtype() instead but we keep this for BC
def convert_image_dtype(image: torch.Tensor, dtype: torch.dtype = torch.float32) -> torch.Tensor:
    return to_dtype_image_tensor(image, dtype=dtype, scale=True)


270
@_register_kernel_internal(to_dtype, datapoints.Video)
271
272
273
274
def to_dtype_video(video: torch.Tensor, dtype: torch.dtype = torch.float, scale: bool = False) -> torch.Tensor:
    return to_dtype_image_tensor(video, dtype, scale=scale)


275
276
@_register_kernel_internal(to_dtype, datapoints.BoundingBoxes, datapoint_wrapper=False)
@_register_kernel_internal(to_dtype, datapoints.Mask, datapoint_wrapper=False)
277
def _to_dtype_tensor_dispatch(inpt: torch.Tensor, dtype: torch.dtype, scale: bool = False) -> torch.Tensor:
278
279
    # We don't need to unwrap and rewrap here, since Datapoint.to() preserves the type
    return inpt.to(dtype)