clip_sampler.py 6.1 KB
Newer Older
1
import math
2
3
from typing import Optional, List, Iterator, Sized, Union, cast

4
5
import torch
import torch.distributed as dist
6
from torch.utils.data import Sampler
Rahul Somani's avatar
Rahul Somani committed
7
from torchvision.datasets.video_utils import VideoClips
8
9
10
11
12
13


class DistributedSampler(Sampler):
    """
    Extension of DistributedSampler, as discussed in
    https://github.com/pytorch/pytorch/issues/23430
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

    Example:
        dataset: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
        num_replicas: 4
        shuffle: False

    when group_size = 1
            RANK    |  shard_dataset
            =========================
            rank_0  |  [0, 4, 8, 12]
            rank_1  |  [1, 5, 9, 13]
            rank_2  |  [2, 6, 10, 0]
            rank_3  |  [3, 7, 11, 1]

    when group_size = 2

            RANK    |  shard_dataset
            =========================
            rank_0  |  [0, 1, 8, 9]
            rank_1  |  [2, 3, 10, 11]
            rank_2  |  [4, 5, 12, 13]
            rank_3  |  [6, 7, 0, 1]

37
38
    """

39
    def __init__(
40
41
42
43
44
45
        self,
        dataset: Sized,
        num_replicas: Optional[int] = None,
        rank: Optional[int] = None,
        shuffle: bool = False,
        group_size: int = 1,
46
    ) -> None:
47
48
49
50
51
52
53
54
        if num_replicas is None:
            if not dist.is_available():
                raise RuntimeError("Requires distributed package to be available")
            num_replicas = dist.get_world_size()
        if rank is None:
            if not dist.is_available():
                raise RuntimeError("Requires distributed package to be available")
            rank = dist.get_rank()
55
56
57
58
        if len(dataset) % group_size != 0:
            raise ValueError(
                f"dataset length must be a multiplier of group size dataset length: {len(dataset)}, group size: {group_size}"
            )
59
        self.dataset = dataset
60
        self.group_size = group_size
61
62
63
        self.num_replicas = num_replicas
        self.rank = rank
        self.epoch = 0
64
        dataset_group_length = len(dataset) // group_size
65
        self.num_group_samples = int(math.ceil(dataset_group_length * 1.0 / self.num_replicas))
66
        self.num_samples = self.num_group_samples * group_size
67
68
69
        self.total_size = self.num_samples * self.num_replicas
        self.shuffle = shuffle

70
    def __iter__(self) -> Iterator[int]:
71
72
73
        # deterministically shuffle based on epoch
        g = torch.Generator()
        g.manual_seed(self.epoch)
74
        indices: Union[torch.Tensor, List[int]]
75
76
77
78
79
80
        if self.shuffle:
            indices = torch.randperm(len(self.dataset), generator=g).tolist()
        else:
            indices = list(range(len(self.dataset)))

        # add extra samples to make it evenly divisible
81
        indices += indices[: (self.total_size - len(indices))]
82
83
        assert len(indices) == self.total_size

84
        total_group_size = self.total_size // self.group_size
85
        indices = torch.reshape(torch.LongTensor(indices), (total_group_size, self.group_size))
86

87
        # subsample
88
        indices = indices[self.rank : total_group_size : self.num_replicas, :]
89
        indices = torch.reshape(indices, (-1,)).tolist()
90
91
92
93
94
95
96
97
        assert len(indices) == self.num_samples

        if isinstance(self.dataset, Sampler):
            orig_indices = list(iter(self.dataset))
            indices = [orig_indices[i] for i in indices]

        return iter(indices)

98
    def __len__(self) -> int:
99
100
        return self.num_samples

101
    def set_epoch(self, epoch: int) -> None:
102
103
104
        self.epoch = epoch


Rahul Somani's avatar
Rahul Somani committed
105
class UniformClipSampler(Sampler):
106
    """
107
108
109
110
    Sample `num_video_clips_per_video` clips for each video, equally spaced.
    When number of unique clips in the video is fewer than num_video_clips_per_video,
    repeat the clips until `num_video_clips_per_video` clips are collected

111
    Args:
112
        video_clips (VideoClips): video clips to sample from
113
        num_clips_per_video (int): number of clips to be sampled per video
114
    """
115

116
    def __init__(self, video_clips: VideoClips, num_clips_per_video: int) -> None:
Rahul Somani's avatar
Rahul Somani committed
117
        if not isinstance(video_clips, VideoClips):
118
            raise TypeError(f"Expected video_clips to be an instance of VideoClips, got {type(video_clips)}")
119
        self.video_clips = video_clips
120
        self.num_clips_per_video = num_clips_per_video
121

122
    def __iter__(self) -> Iterator[int]:
123
124
        idxs = []
        s = 0
125
        # select num_clips_per_video for each video, uniformly spaced
126
127
        for c in self.video_clips.clips:
            length = len(c)
128
129
130
131
            if length == 0:
                # corner case where video decoding fails
                continue

132
            sampled = torch.linspace(s, s + length - 1, steps=self.num_clips_per_video).floor().to(torch.int64)
133
134
            s += length
            idxs.append(sampled)
135
        return iter(cast(List[int], torch.cat(idxs).tolist()))
136

137
    def __len__(self) -> int:
138
        return sum(self.num_clips_per_video for c in self.video_clips.clips if len(c) > 0)
139
140


Rahul Somani's avatar
Rahul Somani committed
141
class RandomClipSampler(Sampler):
142
143
144
    """
    Samples at most `max_video_clips_per_video` clips for each video randomly

145
    Args:
146
147
148
        video_clips (VideoClips): video clips to sample from
        max_clips_per_video (int): maximum number of clips to be sampled per video
    """
149

150
    def __init__(self, video_clips: VideoClips, max_clips_per_video: int) -> None:
Rahul Somani's avatar
Rahul Somani committed
151
        if not isinstance(video_clips, VideoClips):
152
            raise TypeError(f"Expected video_clips to be an instance of VideoClips, got {type(video_clips)}")
153
154
155
        self.video_clips = video_clips
        self.max_clips_per_video = max_clips_per_video

156
    def __iter__(self) -> Iterator[int]:
157
158
159
160
161
162
163
164
165
        idxs = []
        s = 0
        # select at most max_clips_per_video for each video, randomly
        for c in self.video_clips.clips:
            length = len(c)
            size = min(length, self.max_clips_per_video)
            sampled = torch.randperm(length)[:size] + s
            s += length
            idxs.append(sampled)
166
        idxs_ = torch.cat(idxs)
167
        # shuffle all clips randomly
168
169
        perm = torch.randperm(len(idxs_))
        return iter(idxs_[perm].tolist())
170

171
    def __len__(self) -> int:
172
        return sum(min(len(c), self.max_clips_per_video) for c in self.video_clips.clips)