_geometry.py 85.1 KB
Newer Older
1
import math
2
import numbers
3
import warnings
4
from typing import Any, List, Optional, Sequence, Tuple, Union
5
6
7

import PIL.Image
import torch
8
from torch.nn.functional import grid_sample, interpolate, pad as torch_pad
9

10
from torchvision import datapoints
11
12
from torchvision.transforms import _functional_pil as _FP
from torchvision.transforms._functional_tensor import _pad_symmetric
13
from torchvision.transforms.functional import (
14
    _check_antialias,
15
    _compute_resized_output_size as __compute_resized_output_size,
16
    _get_perspective_coeffs,
17
    _interpolation_modes_from_int,
18
    InterpolationMode,
19
    pil_modes_mapping,
20
21
    pil_to_tensor,
    to_pil_image,
22
)
23

24
25
from torchvision.utils import _log_api_usage_once

Philip Meier's avatar
Philip Meier committed
26
from ._meta import clamp_bounding_boxes, convert_format_bounding_boxes, get_size_image_pil
27

28
from ._utils import _get_kernel, _register_explicit_noop, _register_five_ten_crop_kernel, _register_kernel_internal
29

30

31
32
33
34
35
36
37
38
39
40
41
def _check_interpolation(interpolation: Union[InterpolationMode, int]) -> InterpolationMode:
    if isinstance(interpolation, int):
        interpolation = _interpolation_modes_from_int(interpolation)
    elif not isinstance(interpolation, InterpolationMode):
        raise ValueError(
            f"Argument interpolation should be an `InterpolationMode` or a corresponding Pillow integer constant, "
            f"but got {interpolation}."
        )
    return interpolation


42
def horizontal_flip(inpt: datapoints._InputTypeJIT) -> datapoints._InputTypeJIT:
43
    if torch.jit.is_scripting():
44
        return horizontal_flip_image_tensor(inpt)
45
46
47
48
49

    _log_api_usage_once(horizontal_flip)

    kernel = _get_kernel(horizontal_flip, type(inpt))
    return kernel(inpt)
50
51


52
@_register_kernel_internal(horizontal_flip, torch.Tensor)
53
@_register_kernel_internal(horizontal_flip, datapoints.Image)
54
55
56
57
def horizontal_flip_image_tensor(image: torch.Tensor) -> torch.Tensor:
    return image.flip(-1)


58
@_register_kernel_internal(horizontal_flip, PIL.Image.Image)
59
60
def horizontal_flip_image_pil(image: PIL.Image.Image) -> PIL.Image.Image:
    return _FP.hflip(image)
61
62


63
@_register_kernel_internal(horizontal_flip, datapoints.Mask)
64
65
def horizontal_flip_mask(mask: torch.Tensor) -> torch.Tensor:
    return horizontal_flip_image_tensor(mask)
66
67


68
def horizontal_flip_bounding_boxes(
Philip Meier's avatar
Philip Meier committed
69
    bounding_boxes: torch.Tensor, format: datapoints.BoundingBoxFormat, canvas_size: Tuple[int, int]
70
) -> torch.Tensor:
71
    shape = bounding_boxes.shape
72

73
    bounding_boxes = bounding_boxes.clone().reshape(-1, 4)
74

75
    if format == datapoints.BoundingBoxFormat.XYXY:
Philip Meier's avatar
Philip Meier committed
76
        bounding_boxes[:, [2, 0]] = bounding_boxes[:, [0, 2]].sub_(canvas_size[1]).neg_()
77
    elif format == datapoints.BoundingBoxFormat.XYWH:
Philip Meier's avatar
Philip Meier committed
78
        bounding_boxes[:, 0].add_(bounding_boxes[:, 2]).sub_(canvas_size[1]).neg_()
79
    else:  # format == datapoints.BoundingBoxFormat.CXCYWH:
Philip Meier's avatar
Philip Meier committed
80
        bounding_boxes[:, 0].sub_(canvas_size[1]).neg_()
81

82
    return bounding_boxes.reshape(shape)
83
84


85
86
87
88
89
90
91
92
93
@_register_kernel_internal(horizontal_flip, datapoints.BoundingBoxes, datapoint_wrapper=False)
def _horizontal_flip_bounding_boxes_dispatch(inpt: datapoints.BoundingBoxes) -> datapoints.BoundingBoxes:
    output = horizontal_flip_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size
    )
    return datapoints.BoundingBoxes.wrap_like(inpt, output)


@_register_kernel_internal(horizontal_flip, datapoints.Video)
94
95
96
97
def horizontal_flip_video(video: torch.Tensor) -> torch.Tensor:
    return horizontal_flip_image_tensor(video)


98
def vertical_flip(inpt: datapoints._InputTypeJIT) -> datapoints._InputTypeJIT:
99
    if torch.jit.is_scripting():
100
        return vertical_flip_image_tensor(inpt)
101
102
103
104
105

    _log_api_usage_once(vertical_flip)

    kernel = _get_kernel(vertical_flip, type(inpt))
    return kernel(inpt)
106
107


108
@_register_kernel_internal(vertical_flip, torch.Tensor)
109
@_register_kernel_internal(vertical_flip, datapoints.Image)
110
111
112
113
def vertical_flip_image_tensor(image: torch.Tensor) -> torch.Tensor:
    return image.flip(-2)


114
@_register_kernel_internal(vertical_flip, PIL.Image.Image)
Philip Meier's avatar
Philip Meier committed
115
116
def vertical_flip_image_pil(image: PIL.Image) -> PIL.Image:
    return _FP.vflip(image)
117
118


119
@_register_kernel_internal(vertical_flip, datapoints.Mask)
120
121
def vertical_flip_mask(mask: torch.Tensor) -> torch.Tensor:
    return vertical_flip_image_tensor(mask)
122
123


124
def vertical_flip_bounding_boxes(
Philip Meier's avatar
Philip Meier committed
125
    bounding_boxes: torch.Tensor, format: datapoints.BoundingBoxFormat, canvas_size: Tuple[int, int]
126
) -> torch.Tensor:
127
    shape = bounding_boxes.shape
128

129
    bounding_boxes = bounding_boxes.clone().reshape(-1, 4)
130

131
    if format == datapoints.BoundingBoxFormat.XYXY:
Philip Meier's avatar
Philip Meier committed
132
        bounding_boxes[:, [1, 3]] = bounding_boxes[:, [3, 1]].sub_(canvas_size[0]).neg_()
133
    elif format == datapoints.BoundingBoxFormat.XYWH:
Philip Meier's avatar
Philip Meier committed
134
        bounding_boxes[:, 1].add_(bounding_boxes[:, 3]).sub_(canvas_size[0]).neg_()
135
    else:  # format == datapoints.BoundingBoxFormat.CXCYWH:
Philip Meier's avatar
Philip Meier committed
136
        bounding_boxes[:, 1].sub_(canvas_size[0]).neg_()
137

138
    return bounding_boxes.reshape(shape)
139
140


141
142
143
144
145
146
@_register_kernel_internal(vertical_flip, datapoints.BoundingBoxes, datapoint_wrapper=False)
def _vertical_flip_bounding_boxes_dispatch(inpt: datapoints.BoundingBoxes) -> datapoints.BoundingBoxes:
    output = vertical_flip_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size
    )
    return datapoints.BoundingBoxes.wrap_like(inpt, output)
147

148

149
150
151
@_register_kernel_internal(vertical_flip, datapoints.Video)
def vertical_flip_video(video: torch.Tensor) -> torch.Tensor:
    return vertical_flip_image_tensor(video)
152
153


154
155
156
157
158
159
# We changed the names to align them with the transforms, i.e. `RandomHorizontalFlip`. Still, `hflip` and `vflip` are
# prevalent and well understood. Thus, we just alias them without deprecating the old names.
hflip = horizontal_flip
vflip = vertical_flip


160
def _compute_resized_output_size(
Philip Meier's avatar
Philip Meier committed
161
    canvas_size: Tuple[int, int], size: List[int], max_size: Optional[int] = None
162
163
164
) -> List[int]:
    if isinstance(size, int):
        size = [size]
165
166
167
168
169
    elif max_size is not None and len(size) != 1:
        raise ValueError(
            "max_size should only be passed if size specifies the length of the smaller edge, "
            "i.e. size should be an int or a sequence of length 1 in torchscript mode."
        )
Philip Meier's avatar
Philip Meier committed
170
    return __compute_resized_output_size(canvas_size, size=size, max_size=max_size)
171
172


173
174
175
176
177
178
179
def resize(
    inpt: datapoints._InputTypeJIT,
    size: List[int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    max_size: Optional[int] = None,
    antialias: Optional[Union[str, bool]] = "warn",
) -> datapoints._InputTypeJIT:
180
181
182
183
184
185
186
    if torch.jit.is_scripting():
        return resize_image_tensor(inpt, size=size, interpolation=interpolation, max_size=max_size, antialias=antialias)

    _log_api_usage_once(resize)

    kernel = _get_kernel(resize, type(inpt))
    return kernel(inpt, size=size, interpolation=interpolation, max_size=max_size, antialias=antialias)
187
188


189
@_register_kernel_internal(resize, torch.Tensor)
190
@_register_kernel_internal(resize, datapoints.Image)
191
192
193
def resize_image_tensor(
    image: torch.Tensor,
    size: List[int],
194
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
195
    max_size: Optional[int] = None,
196
    antialias: Optional[Union[str, bool]] = "warn",
197
) -> torch.Tensor:
198
    interpolation = _check_interpolation(interpolation)
199
200
    antialias = _check_antialias(img=image, antialias=antialias, interpolation=interpolation)
    assert not isinstance(antialias, str)
201
    antialias = False if antialias is None else antialias
202
203
204
    align_corners: Optional[bool] = None
    if interpolation == InterpolationMode.BILINEAR or interpolation == InterpolationMode.BICUBIC:
        align_corners = False
205
206
207
208
    else:
        # The default of antialias should be True from 0.17, so we don't warn or
        # error if other interpolation modes are used. This is documented.
        antialias = False
209

210
    shape = image.shape
211
    numel = image.numel()
212
    num_channels, old_height, old_width = shape[-3:]
vfdev's avatar
vfdev committed
213
    new_height, new_width = _compute_resized_output_size((old_height, old_width), size=size, max_size=max_size)
214

215
216
    if (new_height, new_width) == (old_height, old_width):
        return image
217
    elif numel > 0:
218
        image = image.reshape(-1, num_channels, old_height, old_width)
219

220
        dtype = image.dtype
221
222
223
224
        acceptable_dtypes = [torch.float32, torch.float64]
        if interpolation == InterpolationMode.NEAREST or interpolation == InterpolationMode.NEAREST_EXACT:
            # uint8 dtype can be included for cpu and cuda input if nearest mode
            acceptable_dtypes.append(torch.uint8)
225
226
227
228
229
230
231
        elif image.device.type == "cpu":
            # uint8 dtype support for bilinear and bicubic is limited to cpu and
            # according to our benchmarks, non-AVX CPUs should still prefer u8->f32->interpolate->u8 path for bilinear
            if (interpolation == InterpolationMode.BILINEAR and "AVX2" in torch.backends.cpu.get_cpu_capability()) or (
                interpolation == InterpolationMode.BICUBIC
            ):
                acceptable_dtypes.append(torch.uint8)
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

        strides = image.stride()
        if image.is_contiguous(memory_format=torch.channels_last) and image.shape[0] == 1 and numel != strides[0]:
            # There is a weird behaviour in torch core where the output tensor of `interpolate()` can be allocated as
            # contiguous even though the input is un-ambiguously channels_last (https://github.com/pytorch/pytorch/issues/68430).
            # In particular this happens for the typical torchvision use-case of single CHW images where we fake the batch dim
            # to become 1CHW. Below, we restride those tensors to trick torch core into properly allocating the output as
            # channels_last, thus preserving the memory format of the input. This is not just for format consistency:
            # for uint8 bilinear images, this also avoids an extra copy (re-packing) of the output and saves time.
            # TODO: when https://github.com/pytorch/pytorch/issues/68430 is fixed (possibly by https://github.com/pytorch/pytorch/pull/100373),
            # we should be able to remove this hack.
            new_strides = list(strides)
            new_strides[0] = numel
            image = image.as_strided((1, num_channels, old_height, old_width), new_strides)

        need_cast = dtype not in acceptable_dtypes
248
249
250
251
        if need_cast:
            image = image.to(dtype=torch.float32)

        image = interpolate(
252
253
            image,
            size=[new_height, new_width],
254
255
            mode=interpolation.value,
            align_corners=align_corners,
256
257
            antialias=antialias,
        )
258

259
260
        if need_cast:
            if interpolation == InterpolationMode.BICUBIC and dtype == torch.uint8:
261
                # This path is hit on non-AVX archs, or on GPU.
262
                image = image.clamp_(min=0, max=255)
263
264
265
            if dtype in (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64):
                image = image.round_()
            image = image.to(dtype=dtype)
266

267
    return image.reshape(shape[:-3] + (num_channels, new_height, new_width))
268
269
270


def resize_image_pil(
271
    image: PIL.Image.Image,
272
    size: Union[Sequence[int], int],
273
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
274
275
    max_size: Optional[int] = None,
) -> PIL.Image.Image:
276
277
278
279
280
281
282
    old_height, old_width = image.height, image.width
    new_height, new_width = _compute_resized_output_size(
        (old_height, old_width),
        size=size,  # type: ignore[arg-type]
        max_size=max_size,
    )

283
    interpolation = _check_interpolation(interpolation)
284
285
286
287
288

    if (new_height, new_width) == (old_height, old_width):
        return image

    return image.resize((new_width, new_height), resample=pil_modes_mapping[interpolation])
289
290


291
292
293
294
295
296
297
298
299
300
301
302
303
@_register_kernel_internal(resize, PIL.Image.Image)
def _resize_image_pil_dispatch(
    image: PIL.Image.Image,
    size: Union[Sequence[int], int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    max_size: Optional[int] = None,
    antialias: Optional[Union[str, bool]] = "warn",
) -> PIL.Image.Image:
    if antialias is False:
        warnings.warn("Anti-alias option is always applied for PIL Image input. Argument antialias is ignored.")
    return resize_image_pil(image, size=size, interpolation=interpolation, max_size=max_size)


304
305
306
def resize_mask(mask: torch.Tensor, size: List[int], max_size: Optional[int] = None) -> torch.Tensor:
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
307
308
309
310
        needs_squeeze = True
    else:
        needs_squeeze = False

311
    output = resize_image_tensor(mask, size=size, interpolation=InterpolationMode.NEAREST, max_size=max_size)
312
313
314
315
316

    if needs_squeeze:
        output = output.squeeze(0)

    return output
317
318


319
320
321
322
323
324
325
326
@_register_kernel_internal(resize, datapoints.Mask, datapoint_wrapper=False)
def _resize_mask_dispatch(
    inpt: datapoints.Mask, size: List[int], max_size: Optional[int] = None, **kwargs: Any
) -> datapoints.Mask:
    output = resize_mask(inpt.as_subclass(torch.Tensor), size, max_size=max_size)
    return datapoints.Mask.wrap_like(inpt, output)


327
def resize_bounding_boxes(
Philip Meier's avatar
Philip Meier committed
328
    bounding_boxes: torch.Tensor, canvas_size: Tuple[int, int], size: List[int], max_size: Optional[int] = None
329
) -> Tuple[torch.Tensor, Tuple[int, int]]:
Philip Meier's avatar
Philip Meier committed
330
331
    old_height, old_width = canvas_size
    new_height, new_width = _compute_resized_output_size(canvas_size, size=size, max_size=max_size)
332
333

    if (new_height, new_width) == (old_height, old_width):
Philip Meier's avatar
Philip Meier committed
334
        return bounding_boxes, canvas_size
335

336
337
    w_ratio = new_width / old_width
    h_ratio = new_height / old_height
338
    ratios = torch.tensor([w_ratio, h_ratio, w_ratio, h_ratio], device=bounding_boxes.device)
339
    return (
340
        bounding_boxes.mul(ratios).to(bounding_boxes.dtype),
341
342
        (new_height, new_width),
    )
343
344


345
346
347
348
349
350
351
352
353
354
355
@_register_kernel_internal(resize, datapoints.BoundingBoxes, datapoint_wrapper=False)
def _resize_bounding_boxes_dispatch(
    inpt: datapoints.BoundingBoxes, size: List[int], max_size: Optional[int] = None, **kwargs: Any
) -> datapoints.BoundingBoxes:
    output, canvas_size = resize_bounding_boxes(
        inpt.as_subclass(torch.Tensor), inpt.canvas_size, size, max_size=max_size
    )
    return datapoints.BoundingBoxes.wrap_like(inpt, output, canvas_size=canvas_size)


@_register_kernel_internal(resize, datapoints.Video)
356
357
358
def resize_video(
    video: torch.Tensor,
    size: List[int],
359
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
360
    max_size: Optional[int] = None,
361
    antialias: Optional[Union[str, bool]] = "warn",
362
363
364
365
) -> torch.Tensor:
    return resize_image_tensor(video, size=size, interpolation=interpolation, max_size=max_size, antialias=antialias)


366
def affine(
Philip Meier's avatar
Philip Meier committed
367
    inpt: datapoints._InputTypeJIT,
368
369
370
371
372
373
374
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
    fill: datapoints._FillTypeJIT = None,
    center: Optional[List[float]] = None,
Philip Meier's avatar
Philip Meier committed
375
) -> datapoints._InputTypeJIT:
376
    if torch.jit.is_scripting():
377
378
        return affine_image_tensor(
            inpt,
379
            angle=angle,
380
381
382
383
384
385
386
            translate=translate,
            scale=scale,
            shear=shear,
            interpolation=interpolation,
            fill=fill,
            center=center,
        )
387
388
389
390
391
392
393
394
395
396
397
398
399
400

    _log_api_usage_once(affine)

    kernel = _get_kernel(affine, type(inpt))
    return kernel(
        inpt,
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        interpolation=interpolation,
        fill=fill,
        center=center,
    )
401
402


403
def _affine_parse_args(
404
    angle: Union[int, float],
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
    translate: List[float],
    scale: float,
    shear: List[float],
    interpolation: InterpolationMode = InterpolationMode.NEAREST,
    center: Optional[List[float]] = None,
) -> Tuple[float, List[float], List[float], Optional[List[float]]]:
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if not isinstance(translate, (list, tuple)):
        raise TypeError("Argument translate should be a sequence")

    if len(translate) != 2:
        raise ValueError("Argument translate should be a sequence of length 2")

    if scale <= 0.0:
        raise ValueError("Argument scale should be positive")

    if not isinstance(shear, (numbers.Number, (list, tuple))):
        raise TypeError("Shear should be either a single value or a sequence of two values")

    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")

    if isinstance(angle, int):
        angle = float(angle)

    if isinstance(translate, tuple):
        translate = list(translate)

    if isinstance(shear, numbers.Number):
        shear = [shear, 0.0]

    if isinstance(shear, tuple):
        shear = list(shear)

    if len(shear) == 1:
        shear = [shear[0], shear[0]]

    if len(shear) != 2:
        raise ValueError(f"Shear should be a sequence containing two values. Got {shear}")

447
448
449
450
451
    if center is not None:
        if not isinstance(center, (list, tuple)):
            raise TypeError("Argument center should be a sequence")
        else:
            center = [float(c) for c in center]
452
453
454
455

    return angle, translate, shear, center


456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
def _get_inverse_affine_matrix(
    center: List[float], angle: float, translate: List[float], scale: float, shear: List[float], inverted: bool = True
) -> List[float]:
    # Helper method to compute inverse matrix for affine transformation

    # Pillow requires inverse affine transformation matrix:
    # Affine matrix is : M = T * C * RotateScaleShear * C^-1
    #
    # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
    #       C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
    #       RotateScaleShear is rotation with scale and shear matrix
    #
    #       RotateScaleShear(a, s, (sx, sy)) =
    #       = R(a) * S(s) * SHy(sy) * SHx(sx)
    #       = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(sx)/cos(sy) - sin(a)), 0 ]
    #         [ s*sin(a - sy)/cos(sy), s*(-sin(a - sy)*tan(sx)/cos(sy) + cos(a)), 0 ]
    #         [ 0                    , 0                                      , 1 ]
    # where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears:
    # SHx(s) = [1, -tan(s)] and SHy(s) = [1      , 0]
    #          [0, 1      ]              [-tan(s), 1]
    #
    # Thus, the inverse is M^-1 = C * RotateScaleShear^-1 * C^-1 * T^-1

    rot = math.radians(angle)
    sx = math.radians(shear[0])
    sy = math.radians(shear[1])

    cx, cy = center
    tx, ty = translate

    # Cached results
    cos_sy = math.cos(sy)
    tan_sx = math.tan(sx)
    rot_minus_sy = rot - sy
    cx_plus_tx = cx + tx
    cy_plus_ty = cy + ty

    # Rotate Scale Shear (RSS) without scaling
    a = math.cos(rot_minus_sy) / cos_sy
    b = -(a * tan_sx + math.sin(rot))
    c = math.sin(rot_minus_sy) / cos_sy
    d = math.cos(rot) - c * tan_sx

    if inverted:
        # Inverted rotation matrix with scale and shear
        # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
        matrix = [d / scale, -b / scale, 0.0, -c / scale, a / scale, 0.0]
        # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
        # and then apply center translation: C * RSS^-1 * C^-1 * T^-1
        matrix[2] += cx - matrix[0] * cx_plus_tx - matrix[1] * cy_plus_ty
        matrix[5] += cy - matrix[3] * cx_plus_tx - matrix[4] * cy_plus_ty
    else:
        matrix = [a * scale, b * scale, 0.0, c * scale, d * scale, 0.0]
        # Apply inverse of center translation: RSS * C^-1
        # and then apply translation and center : T * C * RSS * C^-1
        matrix[2] += cx_plus_tx - matrix[0] * cx - matrix[1] * cy
        matrix[5] += cy_plus_ty - matrix[3] * cx - matrix[4] * cy

    return matrix


def _compute_affine_output_size(matrix: List[float], w: int, h: int) -> Tuple[int, int]:
    # Inspired of PIL implementation:
    # https://github.com/python-pillow/Pillow/blob/11de3318867e4398057373ee9f12dcb33db7335c/src/PIL/Image.py#L2054

    # pts are Top-Left, Top-Right, Bottom-Left, Bottom-Right points.
    # Points are shifted due to affine matrix torch convention about
    # the center point. Center is (0, 0) for image center pivot point (w * 0.5, h * 0.5)
    half_w = 0.5 * w
    half_h = 0.5 * h
    pts = torch.tensor(
        [
            [-half_w, -half_h, 1.0],
            [-half_w, half_h, 1.0],
            [half_w, half_h, 1.0],
            [half_w, -half_h, 1.0],
        ]
    )
    theta = torch.tensor(matrix, dtype=torch.float).view(2, 3)
    new_pts = torch.matmul(pts, theta.T)
    min_vals, max_vals = new_pts.aminmax(dim=0)

    # shift points to [0, w] and [0, h] interval to match PIL results
    halfs = torch.tensor((half_w, half_h))
    min_vals.add_(halfs)
    max_vals.add_(halfs)

    # Truncate precision to 1e-4 to avoid ceil of Xe-15 to 1.0
    tol = 1e-4
    inv_tol = 1.0 / tol
    cmax = max_vals.mul_(inv_tol).trunc_().mul_(tol).ceil_()
    cmin = min_vals.mul_(inv_tol).trunc_().mul_(tol).floor_()
    size = cmax.sub_(cmin)
    return int(size[0]), int(size[1])  # w, h


def _apply_grid_transform(
Philip Meier's avatar
Philip Meier committed
553
    img: torch.Tensor, grid: torch.Tensor, mode: str, fill: datapoints._FillTypeJIT
554
555
) -> torch.Tensor:

556
557
558
559
    # We are using context knowledge that grid should have float dtype
    fp = img.dtype == grid.dtype
    float_img = img if fp else img.to(grid.dtype)

560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
    shape = float_img.shape
    if shape[0] > 1:
        # Apply same grid to a batch of images
        grid = grid.expand(shape[0], -1, -1, -1)

    # Append a dummy mask for customized fill colors, should be faster than grid_sample() twice
    if fill is not None:
        mask = torch.ones((shape[0], 1, shape[2], shape[3]), dtype=float_img.dtype, device=float_img.device)
        float_img = torch.cat((float_img, mask), dim=1)

    float_img = grid_sample(float_img, grid, mode=mode, padding_mode="zeros", align_corners=False)

    # Fill with required color
    if fill is not None:
        float_img, mask = torch.tensor_split(float_img, indices=(-1,), dim=-3)
        mask = mask.expand_as(float_img)
576
        fill_list = fill if isinstance(fill, (tuple, list)) else [float(fill)]  # type: ignore[arg-type]
577
578
579
580
581
582
583
584
585
        fill_img = torch.tensor(fill_list, dtype=float_img.dtype, device=float_img.device).view(1, -1, 1, 1)
        if mode == "nearest":
            bool_mask = mask < 0.5
            float_img[bool_mask] = fill_img.expand_as(float_img)[bool_mask]
        else:  # 'bilinear'
            # The following is mathematically equivalent to:
            # img * mask + (1.0 - mask) * fill = img * mask - fill * mask + fill = mask * (img - fill) + fill
            float_img = float_img.sub_(fill_img).mul_(mask).add_(fill_img)

586
587
588
    img = float_img.round_().to(img.dtype) if not fp else float_img

    return img
589
590
591
592
593
594


def _assert_grid_transform_inputs(
    image: torch.Tensor,
    matrix: Optional[List[float]],
    interpolation: str,
Philip Meier's avatar
Philip Meier committed
595
    fill: datapoints._FillTypeJIT,
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
    supported_interpolation_modes: List[str],
    coeffs: Optional[List[float]] = None,
) -> None:
    if matrix is not None:
        if not isinstance(matrix, list):
            raise TypeError("Argument matrix should be a list")
        elif len(matrix) != 6:
            raise ValueError("Argument matrix should have 6 float values")

    if coeffs is not None and len(coeffs) != 8:
        raise ValueError("Argument coeffs should have 8 float values")

    if fill is not None:
        if isinstance(fill, (tuple, list)):
            length = len(fill)
            num_channels = image.shape[-3]
            if length > 1 and length != num_channels:
                raise ValueError(
                    "The number of elements in 'fill' cannot broadcast to match the number of "
                    f"channels of the image ({length} != {num_channels})"
                )
        elif not isinstance(fill, (int, float)):
            raise ValueError("Argument fill should be either int, float, tuple or list")

    if interpolation not in supported_interpolation_modes:
        raise ValueError(f"Interpolation mode '{interpolation}' is unsupported with Tensor input")


def _affine_grid(
    theta: torch.Tensor,
    w: int,
    h: int,
    ow: int,
    oh: int,
) -> torch.Tensor:
    # https://github.com/pytorch/pytorch/blob/74b65c32be68b15dc7c9e8bb62459efbfbde33d8/aten/src/ATen/native/
    # AffineGridGenerator.cpp#L18
    # Difference with AffineGridGenerator is that:
    # 1) we normalize grid values after applying theta
    # 2) we can normalize by other image size, such that it covers "extend" option like in PIL.Image.rotate
    dtype = theta.dtype
    device = theta.device

    base_grid = torch.empty(1, oh, ow, 3, dtype=dtype, device=device)
    x_grid = torch.linspace((1.0 - ow) * 0.5, (ow - 1.0) * 0.5, steps=ow, device=device)
    base_grid[..., 0].copy_(x_grid)
    y_grid = torch.linspace((1.0 - oh) * 0.5, (oh - 1.0) * 0.5, steps=oh, device=device).unsqueeze_(-1)
    base_grid[..., 1].copy_(y_grid)
    base_grid[..., 2].fill_(1)

    rescaled_theta = theta.transpose(1, 2).div_(torch.tensor([0.5 * w, 0.5 * h], dtype=dtype, device=device))
    output_grid = base_grid.view(1, oh * ow, 3).bmm(rescaled_theta)
    return output_grid.view(1, oh, ow, 2)


651
@_register_kernel_internal(affine, torch.Tensor)
652
@_register_kernel_internal(affine, datapoints.Image)
653
def affine_image_tensor(
654
    image: torch.Tensor,
655
    angle: Union[int, float],
656
657
658
    translate: List[float],
    scale: float,
    shear: List[float],
659
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
Philip Meier's avatar
Philip Meier committed
660
    fill: datapoints._FillTypeJIT = None,
661
662
    center: Optional[List[float]] = None,
) -> torch.Tensor:
663
664
    interpolation = _check_interpolation(interpolation)

665
666
    if image.numel() == 0:
        return image
667

668
    shape = image.shape
669
    ndim = image.ndim
670

671
672
673
674
675
676
677
678
679
680
    if ndim > 4:
        image = image.reshape((-1,) + shape[-3:])
        needs_unsquash = True
    elif ndim == 3:
        image = image.unsqueeze(0)
        needs_unsquash = True
    else:
        needs_unsquash = False

    height, width = shape[-2:]
681
682
683
684
685
    angle, translate, shear, center = _affine_parse_args(angle, translate, scale, shear, interpolation, center)

    center_f = [0.0, 0.0]
    if center is not None:
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
686
        center_f = [(c - s * 0.5) for c, s in zip(center, [width, height])]
687

688
    translate_f = [float(t) for t in translate]
689
690
    matrix = _get_inverse_affine_matrix(center_f, angle, translate_f, scale, shear)

691
692
    _assert_grid_transform_inputs(image, matrix, interpolation.value, fill, ["nearest", "bilinear"])

693
    dtype = image.dtype if torch.is_floating_point(image) else torch.float32
694
695
    theta = torch.tensor(matrix, dtype=dtype, device=image.device).reshape(1, 2, 3)
    grid = _affine_grid(theta, w=width, h=height, ow=width, oh=height)
696
    output = _apply_grid_transform(image, grid, interpolation.value, fill=fill)
697
698
699
700
701

    if needs_unsquash:
        output = output.reshape(shape)

    return output
702
703


704
@_register_kernel_internal(affine, PIL.Image.Image)
705
def affine_image_pil(
706
    image: PIL.Image.Image,
707
    angle: Union[int, float],
708
709
710
    translate: List[float],
    scale: float,
    shear: List[float],
711
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
Philip Meier's avatar
Philip Meier committed
712
    fill: datapoints._FillTypeJIT = None,
713
714
    center: Optional[List[float]] = None,
) -> PIL.Image.Image:
715
    interpolation = _check_interpolation(interpolation)
716
717
718
719
720
721
    angle, translate, shear, center = _affine_parse_args(angle, translate, scale, shear, interpolation, center)

    # center = (img_size[0] * 0.5 + 0.5, img_size[1] * 0.5 + 0.5)
    # it is visually better to estimate the center without 0.5 offset
    # otherwise image rotated by 90 degrees is shifted vs output image of torch.rot90 or F_t.affine
    if center is None:
Philip Meier's avatar
Philip Meier committed
722
        height, width = get_size_image_pil(image)
723
724
725
        center = [width * 0.5, height * 0.5]
    matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)

726
    return _FP.affine(image, matrix, interpolation=pil_modes_mapping[interpolation], fill=fill)
727
728


729
730
def _affine_bounding_boxes_with_expand(
    bounding_boxes: torch.Tensor,
731
    format: datapoints.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
732
    canvas_size: Tuple[int, int],
733
734
735
736
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
737
    center: Optional[List[float]] = None,
738
    expand: bool = False,
739
) -> Tuple[torch.Tensor, Tuple[int, int]]:
740
    if bounding_boxes.numel() == 0:
Philip Meier's avatar
Philip Meier committed
741
        return bounding_boxes, canvas_size
742
743
744
745
746
747
748
749
750

    original_shape = bounding_boxes.shape
    original_dtype = bounding_boxes.dtype
    bounding_boxes = bounding_boxes.clone() if bounding_boxes.is_floating_point() else bounding_boxes.float()
    dtype = bounding_boxes.dtype
    device = bounding_boxes.device
    bounding_boxes = (
        convert_format_bounding_boxes(
            bounding_boxes, old_format=format, new_format=datapoints.BoundingBoxFormat.XYXY, inplace=True
751
752
753
        )
    ).reshape(-1, 4)

754
755
756
    angle, translate, shear, center = _affine_parse_args(
        angle, translate, scale, shear, InterpolationMode.NEAREST, center
    )
757

758
    if center is None:
Philip Meier's avatar
Philip Meier committed
759
        height, width = canvas_size
760
761
        center = [width * 0.5, height * 0.5]

762
763
764
765
766
767
768
    affine_vector = _get_inverse_affine_matrix(center, angle, translate, scale, shear, inverted=False)
    transposed_affine_matrix = (
        torch.tensor(
            affine_vector,
            dtype=dtype,
            device=device,
        )
769
        .reshape(2, 3)
770
771
        .T
    )
772
773
774
775
    # 1) Let's transform bboxes into a tensor of 4 points (top-left, top-right, bottom-left, bottom-right corners).
    # Tensor of points has shape (N * 4, 3), where N is the number of bboxes
    # Single point structure is similar to
    # [(xmin, ymin, 1), (xmax, ymin, 1), (xmax, ymax, 1), (xmin, ymax, 1)]
776
    points = bounding_boxes[:, [[0, 1], [2, 1], [2, 3], [0, 3]]].reshape(-1, 2)
777
    points = torch.cat([points, torch.ones(points.shape[0], 1, device=device, dtype=dtype)], dim=-1)
778
    # 2) Now let's transform the points using affine matrix
779
    transformed_points = torch.matmul(points, transposed_affine_matrix)
780
781
    # 3) Reshape transformed points to [N boxes, 4 points, x/y coords]
    # and compute bounding box from 4 transformed points:
782
    transformed_points = transformed_points.reshape(-1, 4, 2)
783
    out_bbox_mins, out_bbox_maxs = torch.aminmax(transformed_points, dim=1)
784
    out_bboxes = torch.cat([out_bbox_mins, out_bbox_maxs], dim=1)
785
786
787
788

    if expand:
        # Compute minimum point for transformed image frame:
        # Points are Top-Left, Top-Right, Bottom-Left, Bottom-Right points.
Philip Meier's avatar
Philip Meier committed
789
        height, width = canvas_size
790
791
792
        points = torch.tensor(
            [
                [0.0, 0.0, 1.0],
793
794
795
                [0.0, float(height), 1.0],
                [float(width), float(height), 1.0],
                [float(width), 0.0, 1.0],
796
797
798
799
            ],
            dtype=dtype,
            device=device,
        )
800
        new_points = torch.matmul(points, transposed_affine_matrix)
801
        tr = torch.amin(new_points, dim=0, keepdim=True)
802
        # Translate bounding boxes
803
        out_bboxes.sub_(tr.repeat((1, 2)))
804
805
        # Estimate meta-data for image with inverted=True and with center=[0,0]
        affine_vector = _get_inverse_affine_matrix([0.0, 0.0], angle, translate, scale, shear)
806
        new_width, new_height = _compute_affine_output_size(affine_vector, width, height)
Philip Meier's avatar
Philip Meier committed
807
        canvas_size = (new_height, new_width)
808

Philip Meier's avatar
Philip Meier committed
809
    out_bboxes = clamp_bounding_boxes(out_bboxes, format=datapoints.BoundingBoxFormat.XYXY, canvas_size=canvas_size)
810
    out_bboxes = convert_format_bounding_boxes(
811
812
813
814
        out_bboxes, old_format=datapoints.BoundingBoxFormat.XYXY, new_format=format, inplace=True
    ).reshape(original_shape)

    out_bboxes = out_bboxes.to(original_dtype)
Philip Meier's avatar
Philip Meier committed
815
    return out_bboxes, canvas_size
816
817


818
819
def affine_bounding_boxes(
    bounding_boxes: torch.Tensor,
820
    format: datapoints.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
821
    canvas_size: Tuple[int, int],
822
    angle: Union[int, float],
823
824
825
826
827
    translate: List[float],
    scale: float,
    shear: List[float],
    center: Optional[List[float]] = None,
) -> torch.Tensor:
828
829
    out_box, _ = _affine_bounding_boxes_with_expand(
        bounding_boxes,
830
        format=format,
Philip Meier's avatar
Philip Meier committed
831
        canvas_size=canvas_size,
832
833
834
835
836
837
838
839
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        center=center,
        expand=False,
    )
    return out_box
840
841


842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
@_register_kernel_internal(affine, datapoints.BoundingBoxes, datapoint_wrapper=False)
def _affine_bounding_boxes_dispatch(
    inpt: datapoints.BoundingBoxes,
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
    center: Optional[List[float]] = None,
    **kwargs,
) -> datapoints.BoundingBoxes:
    output = affine_bounding_boxes(
        inpt.as_subclass(torch.Tensor),
        format=inpt.format,
        canvas_size=inpt.canvas_size,
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        center=center,
    )
    return datapoints.BoundingBoxes.wrap_like(inpt, output)


865
866
def affine_mask(
    mask: torch.Tensor,
867
    angle: Union[int, float],
868
869
870
    translate: List[float],
    scale: float,
    shear: List[float],
Philip Meier's avatar
Philip Meier committed
871
    fill: datapoints._FillTypeJIT = None,
872
873
    center: Optional[List[float]] = None,
) -> torch.Tensor:
874
875
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
876
877
878
879
880
        needs_squeeze = True
    else:
        needs_squeeze = False

    output = affine_image_tensor(
881
        mask,
882
883
884
885
886
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        interpolation=InterpolationMode.NEAREST,
887
        fill=fill,
888
889
890
        center=center,
    )

891
892
893
894
895
    if needs_squeeze:
        output = output.squeeze(0)

    return output

896

897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
@_register_kernel_internal(affine, datapoints.Mask, datapoint_wrapper=False)
def _affine_mask_dispatch(
    inpt: datapoints.Mask,
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
    fill: datapoints._FillTypeJIT = None,
    center: Optional[List[float]] = None,
    **kwargs,
) -> datapoints.Mask:
    output = affine_mask(
        inpt.as_subclass(torch.Tensor),
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        fill=fill,
        center=center,
    )
    return datapoints.Mask.wrap_like(inpt, output)


@_register_kernel_internal(affine, datapoints.Video)
921
922
923
924
925
926
def affine_video(
    video: torch.Tensor,
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
927
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
Philip Meier's avatar
Philip Meier committed
928
    fill: datapoints._FillTypeJIT = None,
929
930
931
932
933
934
935
936
937
938
939
940
941
942
    center: Optional[List[float]] = None,
) -> torch.Tensor:
    return affine_image_tensor(
        video,
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        interpolation=interpolation,
        fill=fill,
        center=center,
    )


943
def rotate(
Philip Meier's avatar
Philip Meier committed
944
    inpt: datapoints._InputTypeJIT,
945
    angle: float,
946
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
947
    expand: bool = False,
948
    center: Optional[List[float]] = None,
949
    fill: datapoints._FillTypeJIT = None,
Philip Meier's avatar
Philip Meier committed
950
) -> datapoints._InputTypeJIT:
951
952
953
    if torch.jit.is_scripting():
        return rotate_image_tensor(
            inpt, angle=angle, interpolation=interpolation, expand=expand, fill=fill, center=center
954
        )
955

956
    _log_api_usage_once(rotate)
957

958
959
960
961
962
    kernel = _get_kernel(rotate, type(inpt))
    return kernel(inpt, angle=angle, interpolation=interpolation, expand=expand, fill=fill, center=center)


@_register_kernel_internal(rotate, torch.Tensor)
963
@_register_kernel_internal(rotate, datapoints.Image)
964
def rotate_image_tensor(
965
    image: torch.Tensor,
966
    angle: float,
967
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
968
969
    expand: bool = False,
    center: Optional[List[float]] = None,
Philip Meier's avatar
Philip Meier committed
970
    fill: datapoints._FillTypeJIT = None,
971
) -> torch.Tensor:
972
973
    interpolation = _check_interpolation(interpolation)

974
975
    shape = image.shape
    num_channels, height, width = shape[-3:]
976

977
978
    center_f = [0.0, 0.0]
    if center is not None:
979
        if expand:
980
            # TODO: Do we actually want to warn, or just document this?
981
            warnings.warn("The provided center argument has no effect on the result if expand is True")
982
983
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
        center_f = [(c - s * 0.5) for c, s in zip(center, [width, height])]
984
985
986
987

    # due to current incoherence of rotation angle direction between affine and rotate implementations
    # we need to set -angle.
    matrix = _get_inverse_affine_matrix(center_f, -angle, [0.0, 0.0], 1.0, [0.0, 0.0])
988

989
    if image.numel() > 0:
990
991
992
993
994
        image = image.reshape(-1, num_channels, height, width)

        _assert_grid_transform_inputs(image, matrix, interpolation.value, fill, ["nearest", "bilinear"])

        ow, oh = _compute_affine_output_size(matrix, width, height) if expand else (width, height)
995
        dtype = image.dtype if torch.is_floating_point(image) else torch.float32
996
997
        theta = torch.tensor(matrix, dtype=dtype, device=image.device).reshape(1, 2, 3)
        grid = _affine_grid(theta, w=width, h=height, ow=ow, oh=oh)
998
        output = _apply_grid_transform(image, grid, interpolation.value, fill=fill)
999
1000

        new_height, new_width = output.shape[-2:]
1001
    else:
1002
1003
        output = image
        new_width, new_height = _compute_affine_output_size(matrix, width, height) if expand else (width, height)
1004

1005
    return output.reshape(shape[:-3] + (num_channels, new_height, new_width))
1006
1007


1008
@_register_kernel_internal(rotate, PIL.Image.Image)
1009
def rotate_image_pil(
1010
    image: PIL.Image.Image,
1011
    angle: float,
1012
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
1013
1014
    expand: bool = False,
    center: Optional[List[float]] = None,
Philip Meier's avatar
Philip Meier committed
1015
    fill: datapoints._FillTypeJIT = None,
1016
) -> PIL.Image.Image:
1017
1018
    interpolation = _check_interpolation(interpolation)

1019
    if center is not None and expand:
1020
        warnings.warn("The provided center argument has no effect on the result if expand is True")
1021

1022
    return _FP.rotate(
1023
        image, angle, interpolation=pil_modes_mapping[interpolation], expand=expand, fill=fill, center=center
1024
1025
1026
    )


1027
1028
def rotate_bounding_boxes(
    bounding_boxes: torch.Tensor,
1029
    format: datapoints.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
1030
    canvas_size: Tuple[int, int],
1031
1032
1033
    angle: float,
    expand: bool = False,
    center: Optional[List[float]] = None,
1034
) -> Tuple[torch.Tensor, Tuple[int, int]]:
1035
1036
1037
    if center is not None and expand:
        warnings.warn("The provided center argument has no effect on the result if expand is True")

1038
1039
    return _affine_bounding_boxes_with_expand(
        bounding_boxes,
1040
        format=format,
Philip Meier's avatar
Philip Meier committed
1041
        canvas_size=canvas_size,
1042
1043
1044
1045
1046
1047
1048
        angle=-angle,
        translate=[0.0, 0.0],
        scale=1.0,
        shear=[0.0, 0.0],
        center=center,
        expand=expand,
    )
1049
1050


1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
@_register_kernel_internal(rotate, datapoints.BoundingBoxes, datapoint_wrapper=False)
def _rotate_bounding_boxes_dispatch(
    inpt: datapoints.BoundingBoxes, angle: float, expand: bool = False, center: Optional[List[float]] = None, **kwargs
) -> datapoints.BoundingBoxes:
    output, canvas_size = rotate_bounding_boxes(
        inpt.as_subclass(torch.Tensor),
        format=inpt.format,
        canvas_size=inpt.canvas_size,
        angle=angle,
        expand=expand,
        center=center,
    )
    return datapoints.BoundingBoxes.wrap_like(inpt, output, canvas_size=canvas_size)


1066
1067
def rotate_mask(
    mask: torch.Tensor,
1068
1069
1070
    angle: float,
    expand: bool = False,
    center: Optional[List[float]] = None,
Philip Meier's avatar
Philip Meier committed
1071
    fill: datapoints._FillTypeJIT = None,
1072
) -> torch.Tensor:
1073
1074
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
1075
1076
1077
1078
1079
        needs_squeeze = True
    else:
        needs_squeeze = False

    output = rotate_image_tensor(
1080
        mask,
1081
1082
1083
        angle=angle,
        expand=expand,
        interpolation=InterpolationMode.NEAREST,
1084
        fill=fill,
1085
1086
1087
        center=center,
    )

1088
1089
1090
1091
1092
    if needs_squeeze:
        output = output.squeeze(0)

    return output

1093

1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
@_register_kernel_internal(rotate, datapoints.Mask, datapoint_wrapper=False)
def _rotate_mask_dispatch(
    inpt: datapoints.Mask,
    angle: float,
    expand: bool = False,
    center: Optional[List[float]] = None,
    fill: datapoints._FillTypeJIT = None,
    **kwargs,
) -> datapoints.Mask:
    output = rotate_mask(inpt.as_subclass(torch.Tensor), angle=angle, expand=expand, fill=fill, center=center)
    return datapoints.Mask.wrap_like(inpt, output)


@_register_kernel_internal(rotate, datapoints.Video)
1108
1109
1110
def rotate_video(
    video: torch.Tensor,
    angle: float,
1111
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
1112
1113
    expand: bool = False,
    center: Optional[List[float]] = None,
Philip Meier's avatar
Philip Meier committed
1114
    fill: datapoints._FillTypeJIT = None,
1115
1116
1117
1118
) -> torch.Tensor:
    return rotate_image_tensor(video, angle, interpolation=interpolation, expand=expand, fill=fill, center=center)


1119
def pad(
Philip Meier's avatar
Philip Meier committed
1120
    inpt: datapoints._InputTypeJIT,
1121
1122
1123
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
    padding_mode: str = "constant",
Philip Meier's avatar
Philip Meier committed
1124
) -> datapoints._InputTypeJIT:
1125
1126
    if torch.jit.is_scripting():
        return pad_image_tensor(inpt, padding=padding, fill=fill, padding_mode=padding_mode)
1127

1128
    _log_api_usage_once(pad)
1129

1130
1131
    kernel = _get_kernel(pad, type(inpt))
    return kernel(inpt, padding=padding, fill=fill, padding_mode=padding_mode)
1132
1133


1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
def _parse_pad_padding(padding: Union[int, List[int]]) -> List[int]:
    if isinstance(padding, int):
        pad_left = pad_right = pad_top = pad_bottom = padding
    elif isinstance(padding, (tuple, list)):
        if len(padding) == 1:
            pad_left = pad_right = pad_top = pad_bottom = padding[0]
        elif len(padding) == 2:
            pad_left = pad_right = padding[0]
            pad_top = pad_bottom = padding[1]
        elif len(padding) == 4:
            pad_left = padding[0]
            pad_top = padding[1]
            pad_right = padding[2]
            pad_bottom = padding[3]
        else:
            raise ValueError(
                f"Padding must be an int or a 1, 2, or 4 element tuple, not a {len(padding)} element tuple"
            )
    else:
        raise TypeError(f"`padding` should be an integer or tuple or list of integers, but got {padding}")

    return [pad_left, pad_right, pad_top, pad_bottom]
1156

1157

1158
@_register_kernel_internal(pad, torch.Tensor)
1159
@_register_kernel_internal(pad, datapoints.Image)
1160
def pad_image_tensor(
1161
    image: torch.Tensor,
1162
1163
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
1164
1165
    padding_mode: str = "constant",
) -> torch.Tensor:
1166
1167
1168
1169
1170
    # Be aware that while `padding` has order `[left, top, right, bottom]` has order, `torch_padding` uses
    # `[left, right, top, bottom]`. This stems from the fact that we align our API with PIL, but need to use `torch_pad`
    # internally.
    torch_padding = _parse_pad_padding(padding)

1171
    if padding_mode not in ("constant", "edge", "reflect", "symmetric"):
1172
1173
1174
1175
1176
        raise ValueError(
            f"`padding_mode` should be either `'constant'`, `'edge'`, `'reflect'` or `'symmetric'`, "
            f"but got `'{padding_mode}'`."
        )

1177
    if fill is None:
1178
1179
1180
1181
1182
1183
        fill = 0

    if isinstance(fill, (int, float)):
        return _pad_with_scalar_fill(image, torch_padding, fill=fill, padding_mode=padding_mode)
    elif len(fill) == 1:
        return _pad_with_scalar_fill(image, torch_padding, fill=fill[0], padding_mode=padding_mode)
1184
    else:
1185
        return _pad_with_vector_fill(image, torch_padding, fill=fill, padding_mode=padding_mode)
1186
1187
1188


def _pad_with_scalar_fill(
1189
    image: torch.Tensor,
1190
1191
1192
    torch_padding: List[int],
    fill: Union[int, float],
    padding_mode: str,
1193
) -> torch.Tensor:
1194
1195
    shape = image.shape
    num_channels, height, width = shape[-3:]
1196

1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
    batch_size = 1
    for s in shape[:-3]:
        batch_size *= s

    image = image.reshape(batch_size, num_channels, height, width)

    if padding_mode == "edge":
        # Similar to the padding order, `torch_pad`'s PIL's padding modes don't have the same names. Thus, we map
        # the PIL name for the padding mode, which we are also using for our API, to the corresponding `torch_pad`
        # name.
        padding_mode = "replicate"

    if padding_mode == "constant":
        image = torch_pad(image, torch_padding, mode=padding_mode, value=float(fill))
    elif padding_mode in ("reflect", "replicate"):
        # `torch_pad` only supports `"reflect"` or `"replicate"` padding for floating point inputs.
        # TODO: See https://github.com/pytorch/pytorch/issues/40763
        dtype = image.dtype
        if not image.is_floating_point():
            needs_cast = True
            image = image.to(torch.float32)
        else:
            needs_cast = False
1220

1221
1222
1223
1224
1225
        image = torch_pad(image, torch_padding, mode=padding_mode)

        if needs_cast:
            image = image.to(dtype)
    else:  # padding_mode == "symmetric"
1226
        image = _pad_symmetric(image, torch_padding)
1227
1228

    new_height, new_width = image.shape[-2:]
1229

1230
    return image.reshape(shape[:-3] + (num_channels, new_height, new_width))
1231
1232


1233
# TODO: This should be removed once torch_pad supports non-scalar padding values
1234
def _pad_with_vector_fill(
1235
    image: torch.Tensor,
1236
    torch_padding: List[int],
1237
    fill: List[float],
1238
    padding_mode: str,
1239
1240
1241
1242
) -> torch.Tensor:
    if padding_mode != "constant":
        raise ValueError(f"Padding mode '{padding_mode}' is not supported if fill is not scalar")

1243
1244
    output = _pad_with_scalar_fill(image, torch_padding, fill=0, padding_mode="constant")
    left, right, top, bottom = torch_padding
1245
    fill = torch.tensor(fill, dtype=image.dtype, device=image.device).reshape(-1, 1, 1)
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257

    if top > 0:
        output[..., :top, :] = fill
    if left > 0:
        output[..., :, :left] = fill
    if bottom > 0:
        output[..., -bottom:, :] = fill
    if right > 0:
        output[..., :, -right:] = fill
    return output


1258
pad_image_pil = _register_kernel_internal(pad, PIL.Image.Image)(_FP.pad)
1259
1260


1261
@_register_kernel_internal(pad, datapoints.Mask)
1262
1263
def pad_mask(
    mask: torch.Tensor,
1264
1265
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
1266
1267
    padding_mode: str = "constant",
) -> torch.Tensor:
1268
1269
1270
    if fill is None:
        fill = 0

1271
    if isinstance(fill, (tuple, list)):
1272
1273
        raise ValueError("Non-scalar fill value is not supported")

1274
1275
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
1276
1277
1278
1279
        needs_squeeze = True
    else:
        needs_squeeze = False

1280
    output = pad_image_tensor(mask, padding=padding, fill=fill, padding_mode=padding_mode)
1281
1282
1283
1284
1285

    if needs_squeeze:
        output = output.squeeze(0)

    return output
1286
1287


1288
1289
def pad_bounding_boxes(
    bounding_boxes: torch.Tensor,
1290
    format: datapoints.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
1291
    canvas_size: Tuple[int, int],
1292
    padding: List[int],
vfdev's avatar
vfdev committed
1293
    padding_mode: str = "constant",
1294
) -> Tuple[torch.Tensor, Tuple[int, int]]:
vfdev's avatar
vfdev committed
1295
1296
1297
1298
    if padding_mode not in ["constant"]:
        # TODO: add support of other padding modes
        raise ValueError(f"Padding mode '{padding_mode}' is not supported with bounding boxes")

1299
    left, right, top, bottom = _parse_pad_padding(padding)
1300

1301
    if format == datapoints.BoundingBoxFormat.XYXY:
1302
1303
1304
        pad = [left, top, left, top]
    else:
        pad = [left, top, 0, 0]
1305
    bounding_boxes = bounding_boxes + torch.tensor(pad, dtype=bounding_boxes.dtype, device=bounding_boxes.device)
1306

Philip Meier's avatar
Philip Meier committed
1307
    height, width = canvas_size
1308
1309
    height += top + bottom
    width += left + right
Philip Meier's avatar
Philip Meier committed
1310
    canvas_size = (height, width)
1311

Philip Meier's avatar
Philip Meier committed
1312
    return clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size), canvas_size
1313
1314


1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
@_register_kernel_internal(pad, datapoints.BoundingBoxes, datapoint_wrapper=False)
def _pad_bounding_boxes_dispatch(
    inpt: datapoints.BoundingBoxes, padding: List[int], padding_mode: str = "constant", **kwargs
) -> datapoints.BoundingBoxes:
    output, canvas_size = pad_bounding_boxes(
        inpt.as_subclass(torch.Tensor),
        format=inpt.format,
        canvas_size=inpt.canvas_size,
        padding=padding,
        padding_mode=padding_mode,
    )
    return datapoints.BoundingBoxes.wrap_like(inpt, output, canvas_size=canvas_size)


@_register_kernel_internal(pad, datapoints.Video)
1330
1331
def pad_video(
    video: torch.Tensor,
1332
1333
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
1334
1335
1336
1337
1338
    padding_mode: str = "constant",
) -> torch.Tensor:
    return pad_image_tensor(video, padding, fill=fill, padding_mode=padding_mode)


1339
def crop(inpt: datapoints._InputTypeJIT, top: int, left: int, height: int, width: int) -> datapoints._InputTypeJIT:
1340
1341
1342
1343
    if torch.jit.is_scripting():
        return crop_image_tensor(inpt, top=top, left=left, height=height, width=width)

    _log_api_usage_once(crop)
1344

1345
1346
    kernel = _get_kernel(crop, type(inpt))
    return kernel(inpt, top=top, left=left, height=height, width=width)
1347

1348
1349

@_register_kernel_internal(crop, torch.Tensor)
1350
@_register_kernel_internal(crop, datapoints.Image)
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
def crop_image_tensor(image: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
    h, w = image.shape[-2:]

    right = left + width
    bottom = top + height

    if left < 0 or top < 0 or right > w or bottom > h:
        image = image[..., max(top, 0) : bottom, max(left, 0) : right]
        torch_padding = [
            max(min(right, 0) - left, 0),
            max(right - max(w, left), 0),
            max(min(bottom, 0) - top, 0),
            max(bottom - max(h, top), 0),
        ]
        return _pad_with_scalar_fill(image, torch_padding, fill=0, padding_mode="constant")
    return image[..., top:bottom, left:right]


1369
crop_image_pil = _FP.crop
1370
_register_kernel_internal(crop, PIL.Image.Image)(crop_image_pil)
1371
1372


1373
1374
def crop_bounding_boxes(
    bounding_boxes: torch.Tensor,
1375
    format: datapoints.BoundingBoxFormat,
1376
1377
    top: int,
    left: int,
1378
1379
1380
    height: int,
    width: int,
) -> Tuple[torch.Tensor, Tuple[int, int]]:
1381

1382
    # Crop or implicit pad if left and/or top have negative values:
1383
    if format == datapoints.BoundingBoxFormat.XYXY:
1384
        sub = [left, top, left, top]
1385
    else:
1386
1387
        sub = [left, top, 0, 0]

1388
    bounding_boxes = bounding_boxes - torch.tensor(sub, dtype=bounding_boxes.dtype, device=bounding_boxes.device)
Philip Meier's avatar
Philip Meier committed
1389
    canvas_size = (height, width)
1390

Philip Meier's avatar
Philip Meier committed
1391
    return clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size), canvas_size
1392
1393


1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
@_register_kernel_internal(crop, datapoints.BoundingBoxes, datapoint_wrapper=False)
def _crop_bounding_boxes_dispatch(
    inpt: datapoints.BoundingBoxes, top: int, left: int, height: int, width: int
) -> datapoints.BoundingBoxes:
    output, canvas_size = crop_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, top=top, left=left, height=height, width=width
    )
    return datapoints.BoundingBoxes.wrap_like(inpt, output, canvas_size=canvas_size)


@_register_kernel_internal(crop, datapoints.Mask)
1405
def crop_mask(mask: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
        needs_squeeze = True
    else:
        needs_squeeze = False

    output = crop_image_tensor(mask, top, left, height, width)

    if needs_squeeze:
        output = output.squeeze(0)

    return output
1418
1419


1420
@_register_kernel_internal(crop, datapoints.Video)
1421
1422
1423
1424
def crop_video(video: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
    return crop_image_tensor(video, top, left, height, width)


1425
1426
1427
1428
1429
1430
1431
1432
def perspective(
    inpt: datapoints._InputTypeJIT,
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    fill: datapoints._FillTypeJIT = None,
    coefficients: Optional[List[float]] = None,
) -> datapoints._InputTypeJIT:
1433
    if torch.jit.is_scripting():
1434
        return perspective_image_tensor(
1435
1436
1437
1438
1439
1440
            inpt,
            startpoints=startpoints,
            endpoints=endpoints,
            interpolation=interpolation,
            fill=fill,
            coefficients=coefficients,
1441
        )
1442

1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
    _log_api_usage_once(perspective)

    kernel = _get_kernel(perspective, type(inpt))
    return kernel(
        inpt,
        startpoints=startpoints,
        endpoints=endpoints,
        interpolation=interpolation,
        fill=fill,
        coefficients=coefficients,
    )

1455

1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
def _perspective_grid(coeffs: List[float], ow: int, oh: int, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
    # https://github.com/python-pillow/Pillow/blob/4634eafe3c695a014267eefdce830b4a825beed7/
    # src/libImaging/Geometry.c#L394

    #
    # x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
    # y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)
    #
    theta1 = torch.tensor(
        [[[coeffs[0], coeffs[1], coeffs[2]], [coeffs[3], coeffs[4], coeffs[5]]]], dtype=dtype, device=device
    )
    theta2 = torch.tensor([[[coeffs[6], coeffs[7], 1.0], [coeffs[6], coeffs[7], 1.0]]], dtype=dtype, device=device)

    d = 0.5
    base_grid = torch.empty(1, oh, ow, 3, dtype=dtype, device=device)
1471
    x_grid = torch.linspace(d, ow + d - 1.0, steps=ow, device=device, dtype=dtype)
1472
    base_grid[..., 0].copy_(x_grid)
1473
    y_grid = torch.linspace(d, oh + d - 1.0, steps=oh, device=device, dtype=dtype).unsqueeze_(-1)
1474
1475
1476
1477
    base_grid[..., 1].copy_(y_grid)
    base_grid[..., 2].fill_(1)

    rescaled_theta1 = theta1.transpose(1, 2).div_(torch.tensor([0.5 * ow, 0.5 * oh], dtype=dtype, device=device))
1478
1479
1480
    shape = (1, oh * ow, 3)
    output_grid1 = base_grid.view(shape).bmm(rescaled_theta1)
    output_grid2 = base_grid.view(shape).bmm(theta2.transpose(1, 2))
1481
1482
1483
1484
1485

    output_grid = output_grid1.div_(output_grid2).sub_(1.0)
    return output_grid.view(1, oh, ow, 2)


1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
def _perspective_coefficients(
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    coefficients: Optional[List[float]],
) -> List[float]:
    if coefficients is not None:
        if startpoints is not None and endpoints is not None:
            raise ValueError("The startpoints/endpoints and the coefficients shouldn't be defined concurrently.")
        elif len(coefficients) != 8:
            raise ValueError("Argument coefficients should have 8 float values")
        return coefficients
    elif startpoints is not None and endpoints is not None:
        return _get_perspective_coeffs(startpoints, endpoints)
    else:
        raise ValueError("Either the startpoints/endpoints or the coefficients must have non `None` values.")


1503
@_register_kernel_internal(perspective, torch.Tensor)
1504
@_register_kernel_internal(perspective, datapoints.Image)
1505
def perspective_image_tensor(
1506
    image: torch.Tensor,
1507
1508
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1509
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
Philip Meier's avatar
Philip Meier committed
1510
    fill: datapoints._FillTypeJIT = None,
1511
    coefficients: Optional[List[float]] = None,
1512
) -> torch.Tensor:
1513
    perspective_coeffs = _perspective_coefficients(startpoints, endpoints, coefficients)
1514
1515
    interpolation = _check_interpolation(interpolation)

1516
1517
1518
1519
    if image.numel() == 0:
        return image

    shape = image.shape
1520
    ndim = image.ndim
1521

1522
    if ndim > 4:
1523
        image = image.reshape((-1,) + shape[-3:])
1524
        needs_unsquash = True
1525
1526
1527
    elif ndim == 3:
        image = image.unsqueeze(0)
        needs_unsquash = True
1528
1529
1530
    else:
        needs_unsquash = False

1531
    _assert_grid_transform_inputs(
1532
1533
1534
1535
1536
1537
1538
1539
        image,
        matrix=None,
        interpolation=interpolation.value,
        fill=fill,
        supported_interpolation_modes=["nearest", "bilinear"],
        coeffs=perspective_coeffs,
    )

1540
    oh, ow = shape[-2:]
1541
    dtype = image.dtype if torch.is_floating_point(image) else torch.float32
1542
    grid = _perspective_grid(perspective_coeffs, ow=ow, oh=oh, dtype=dtype, device=image.device)
1543
    output = _apply_grid_transform(image, grid, interpolation.value, fill=fill)
1544
1545

    if needs_unsquash:
1546
        output = output.reshape(shape)
1547
1548

    return output
1549
1550


1551
@_register_kernel_internal(perspective, PIL.Image.Image)
1552
def perspective_image_pil(
1553
    image: PIL.Image.Image,
1554
1555
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1556
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BICUBIC,
Philip Meier's avatar
Philip Meier committed
1557
    fill: datapoints._FillTypeJIT = None,
1558
    coefficients: Optional[List[float]] = None,
1559
) -> PIL.Image.Image:
1560
    perspective_coeffs = _perspective_coefficients(startpoints, endpoints, coefficients)
1561
    interpolation = _check_interpolation(interpolation)
1562
    return _FP.perspective(image, perspective_coeffs, interpolation=pil_modes_mapping[interpolation], fill=fill)
1563
1564


1565
1566
def perspective_bounding_boxes(
    bounding_boxes: torch.Tensor,
1567
    format: datapoints.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
1568
    canvas_size: Tuple[int, int],
1569
1570
1571
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    coefficients: Optional[List[float]] = None,
1572
) -> torch.Tensor:
1573
1574
    if bounding_boxes.numel() == 0:
        return bounding_boxes
1575

1576
    perspective_coeffs = _perspective_coefficients(startpoints, endpoints, coefficients)
1577

1578
1579
1580
1581
    original_shape = bounding_boxes.shape
    # TODO: first cast to float if bbox is int64 before convert_format_bounding_boxes
    bounding_boxes = (
        convert_format_bounding_boxes(bounding_boxes, old_format=format, new_format=datapoints.BoundingBoxFormat.XYXY)
1582
    ).reshape(-1, 4)
1583

1584
1585
    dtype = bounding_boxes.dtype if torch.is_floating_point(bounding_boxes) else torch.float32
    device = bounding_boxes.device
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616

    # perspective_coeffs are computed as endpoint -> start point
    # We have to invert perspective_coeffs for bboxes:
    # (x, y) - end point and (x_out, y_out) - start point
    #   x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
    #   y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)
    # and we would like to get:
    # x = (inv_coeffs[0] * x_out + inv_coeffs[1] * y_out + inv_coeffs[2])
    #       / (inv_coeffs[6] * x_out + inv_coeffs[7] * y_out + 1)
    # y = (inv_coeffs[3] * x_out + inv_coeffs[4] * y_out + inv_coeffs[5])
    #       / (inv_coeffs[6] * x_out + inv_coeffs[7] * y_out + 1)
    # and compute inv_coeffs in terms of coeffs

    denom = perspective_coeffs[0] * perspective_coeffs[4] - perspective_coeffs[1] * perspective_coeffs[3]
    if denom == 0:
        raise RuntimeError(
            f"Provided perspective_coeffs {perspective_coeffs} can not be inverted to transform bounding boxes. "
            f"Denominator is zero, denom={denom}"
        )

    inv_coeffs = [
        (perspective_coeffs[4] - perspective_coeffs[5] * perspective_coeffs[7]) / denom,
        (-perspective_coeffs[1] + perspective_coeffs[2] * perspective_coeffs[7]) / denom,
        (perspective_coeffs[1] * perspective_coeffs[5] - perspective_coeffs[2] * perspective_coeffs[4]) / denom,
        (-perspective_coeffs[3] + perspective_coeffs[5] * perspective_coeffs[6]) / denom,
        (perspective_coeffs[0] - perspective_coeffs[2] * perspective_coeffs[6]) / denom,
        (-perspective_coeffs[0] * perspective_coeffs[5] + perspective_coeffs[2] * perspective_coeffs[3]) / denom,
        (-perspective_coeffs[4] * perspective_coeffs[6] + perspective_coeffs[3] * perspective_coeffs[7]) / denom,
        (-perspective_coeffs[0] * perspective_coeffs[7] + perspective_coeffs[1] * perspective_coeffs[6]) / denom,
    ]

1617
1618
    theta1 = torch.tensor(
        [[inv_coeffs[0], inv_coeffs[1], inv_coeffs[2]], [inv_coeffs[3], inv_coeffs[4], inv_coeffs[5]]],
1619
1620
1621
1622
        dtype=dtype,
        device=device,
    )

1623
1624
1625
1626
    theta2 = torch.tensor(
        [[inv_coeffs[6], inv_coeffs[7], 1.0], [inv_coeffs[6], inv_coeffs[7], 1.0]], dtype=dtype, device=device
    )

1627
1628
1629
1630
    # 1) Let's transform bboxes into a tensor of 4 points (top-left, top-right, bottom-left, bottom-right corners).
    # Tensor of points has shape (N * 4, 3), where N is the number of bboxes
    # Single point structure is similar to
    # [(xmin, ymin, 1), (xmax, ymin, 1), (xmax, ymax, 1), (xmin, ymax, 1)]
1631
    points = bounding_boxes[:, [[0, 1], [2, 1], [2, 3], [0, 3]]].reshape(-1, 2)
1632
1633
1634
1635
1636
    points = torch.cat([points, torch.ones(points.shape[0], 1, device=points.device)], dim=-1)
    # 2) Now let's transform the points using perspective matrices
    #   x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
    #   y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)

1637
1638
    numer_points = torch.matmul(points, theta1.T)
    denom_points = torch.matmul(points, theta2.T)
1639
    transformed_points = numer_points.div_(denom_points)
1640
1641
1642

    # 3) Reshape transformed points to [N boxes, 4 points, x/y coords]
    # and compute bounding box from 4 transformed points:
1643
    transformed_points = transformed_points.reshape(-1, 4, 2)
1644
1645
    out_bbox_mins, out_bbox_maxs = torch.aminmax(transformed_points, dim=1)

1646
1647
    out_bboxes = clamp_bounding_boxes(
        torch.cat([out_bbox_mins, out_bbox_maxs], dim=1).to(bounding_boxes.dtype),
1648
        format=datapoints.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
1649
        canvas_size=canvas_size,
1650
    )
1651
1652
1653

    # out_bboxes should be of shape [N boxes, 4]

1654
    return convert_format_bounding_boxes(
1655
        out_bboxes, old_format=datapoints.BoundingBoxFormat.XYXY, new_format=format, inplace=True
1656
    ).reshape(original_shape)
1657
1658


1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
@_register_kernel_internal(perspective, datapoints.BoundingBoxes, datapoint_wrapper=False)
def _perspective_bounding_boxes_dispatch(
    inpt: datapoints.BoundingBoxes,
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    coefficients: Optional[List[float]] = None,
    **kwargs,
) -> datapoints.BoundingBoxes:
    output = perspective_bounding_boxes(
        inpt.as_subclass(torch.Tensor),
        format=inpt.format,
        canvas_size=inpt.canvas_size,
        startpoints=startpoints,
        endpoints=endpoints,
        coefficients=coefficients,
    )
    return datapoints.BoundingBoxes.wrap_like(inpt, output)


1678
1679
def perspective_mask(
    mask: torch.Tensor,
1680
1681
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
Philip Meier's avatar
Philip Meier committed
1682
    fill: datapoints._FillTypeJIT = None,
1683
    coefficients: Optional[List[float]] = None,
1684
) -> torch.Tensor:
1685
1686
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
1687
1688
1689
1690
1691
        needs_squeeze = True
    else:
        needs_squeeze = False

    output = perspective_image_tensor(
1692
        mask, startpoints, endpoints, interpolation=InterpolationMode.NEAREST, fill=fill, coefficients=coefficients
1693
    )
1694

1695
1696
1697
1698
1699
    if needs_squeeze:
        output = output.squeeze(0)

    return output

1700

1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
@_register_kernel_internal(perspective, datapoints.Mask, datapoint_wrapper=False)
def _perspective_mask_dispatch(
    inpt: datapoints.Mask,
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    fill: datapoints._FillTypeJIT = None,
    coefficients: Optional[List[float]] = None,
    **kwargs,
) -> datapoints.Mask:
    output = perspective_mask(
        inpt.as_subclass(torch.Tensor),
        startpoints=startpoints,
        endpoints=endpoints,
        fill=fill,
        coefficients=coefficients,
    )
    return datapoints.Mask.wrap_like(inpt, output)


@_register_kernel_internal(perspective, datapoints.Video)
1721
1722
def perspective_video(
    video: torch.Tensor,
1723
1724
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1725
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
Philip Meier's avatar
Philip Meier committed
1726
    fill: datapoints._FillTypeJIT = None,
1727
    coefficients: Optional[List[float]] = None,
1728
) -> torch.Tensor:
1729
1730
1731
    return perspective_image_tensor(
        video, startpoints, endpoints, interpolation=interpolation, fill=fill, coefficients=coefficients
    )
1732
1733


1734
def elastic(
Philip Meier's avatar
Philip Meier committed
1735
    inpt: datapoints._InputTypeJIT,
1736
    displacement: torch.Tensor,
1737
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
Philip Meier's avatar
Philip Meier committed
1738
1739
    fill: datapoints._FillTypeJIT = None,
) -> datapoints._InputTypeJIT:
1740
1741
1742
1743
1744
1745
1746
    if torch.jit.is_scripting():
        return elastic_image_tensor(inpt, displacement=displacement, interpolation=interpolation, fill=fill)

    _log_api_usage_once(elastic)

    kernel = _get_kernel(elastic, type(inpt))
    return kernel(inpt, displacement=displacement, interpolation=interpolation, fill=fill)
1747
1748


1749
1750
1751
elastic_transform = elastic


1752
@_register_kernel_internal(elastic, torch.Tensor)
1753
@_register_kernel_internal(elastic, datapoints.Image)
1754
def elastic_image_tensor(
1755
    image: torch.Tensor,
1756
    displacement: torch.Tensor,
1757
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
Philip Meier's avatar
Philip Meier committed
1758
    fill: datapoints._FillTypeJIT = None,
1759
) -> torch.Tensor:
1760
1761
    interpolation = _check_interpolation(interpolation)

1762
1763
1764
1765
    if image.numel() == 0:
        return image

    shape = image.shape
1766
    ndim = image.ndim
1767

1768
    device = image.device
1769
    dtype = image.dtype if torch.is_floating_point(image) else torch.float32
1770
1771
1772
1773
1774
1775
1776

    # Patch: elastic transform should support (cpu,f16) input
    is_cpu_half = device.type == "cpu" and dtype == torch.float16
    if is_cpu_half:
        image = image.to(torch.float32)
        dtype = torch.float32

1777
1778
1779
    # We are aware that if input image dtype is uint8 and displacement is float64 then
    # displacement will be casted to float32 and all computations will be done with float32
    # We can fix this later if needed
1780

1781
1782
1783
1784
    expected_shape = (1,) + shape[-2:] + (2,)
    if expected_shape != displacement.shape:
        raise ValueError(f"Argument displacement shape should be {expected_shape}, but given {displacement.shape}")

1785
    if ndim > 4:
1786
        image = image.reshape((-1,) + shape[-3:])
1787
        needs_unsquash = True
1788
1789
1790
    elif ndim == 3:
        image = image.unsqueeze(0)
        needs_unsquash = True
1791
1792
1793
    else:
        needs_unsquash = False

1794
1795
    if displacement.dtype != dtype or displacement.device != device:
        displacement = displacement.to(dtype=dtype, device=device)
1796

1797
1798
1799
    image_height, image_width = shape[-2:]
    grid = _create_identity_grid((image_height, image_width), device=device, dtype=dtype).add_(displacement)
    output = _apply_grid_transform(image, grid, interpolation.value, fill=fill)
1800
1801

    if needs_unsquash:
1802
        output = output.reshape(shape)
1803

1804
1805
1806
    if is_cpu_half:
        output = output.to(torch.float16)

1807
    return output
1808
1809


1810
@_register_kernel_internal(elastic, PIL.Image.Image)
1811
def elastic_image_pil(
1812
    image: PIL.Image.Image,
1813
    displacement: torch.Tensor,
1814
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
Philip Meier's avatar
Philip Meier committed
1815
    fill: datapoints._FillTypeJIT = None,
1816
) -> PIL.Image.Image:
1817
    t_img = pil_to_tensor(image)
1818
    output = elastic_image_tensor(t_img, displacement, interpolation=interpolation, fill=fill)
1819
    return to_pil_image(output, mode=image.mode)
1820
1821


1822
def _create_identity_grid(size: Tuple[int, int], device: torch.device, dtype: torch.dtype) -> torch.Tensor:
1823
    sy, sx = size
1824
1825
    base_grid = torch.empty(1, sy, sx, 2, device=device, dtype=dtype)
    x_grid = torch.linspace((-sx + 1) / sx, (sx - 1) / sx, sx, device=device, dtype=dtype)
1826
1827
    base_grid[..., 0].copy_(x_grid)

1828
    y_grid = torch.linspace((-sy + 1) / sy, (sy - 1) / sy, sy, device=device, dtype=dtype).unsqueeze_(-1)
1829
1830
1831
1832
1833
    base_grid[..., 1].copy_(y_grid)

    return base_grid


1834
1835
def elastic_bounding_boxes(
    bounding_boxes: torch.Tensor,
1836
    format: datapoints.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
1837
    canvas_size: Tuple[int, int],
1838
1839
    displacement: torch.Tensor,
) -> torch.Tensor:
1840
1841
    if bounding_boxes.numel() == 0:
        return bounding_boxes
1842

1843
    # TODO: add in docstring about approximation we are doing for grid inversion
1844
1845
    device = bounding_boxes.device
    dtype = bounding_boxes.dtype if torch.is_floating_point(bounding_boxes) else torch.float32
1846
1847
1848

    if displacement.dtype != dtype or displacement.device != device:
        displacement = displacement.to(dtype=dtype, device=device)
1849

1850
1851
1852
1853
    original_shape = bounding_boxes.shape
    # TODO: first cast to float if bbox is int64 before convert_format_bounding_boxes
    bounding_boxes = (
        convert_format_bounding_boxes(bounding_boxes, old_format=format, new_format=datapoints.BoundingBoxFormat.XYXY)
1854
    ).reshape(-1, 4)
1855

Philip Meier's avatar
Philip Meier committed
1856
    id_grid = _create_identity_grid(canvas_size, device=device, dtype=dtype)
1857
1858
    # We construct an approximation of inverse grid as inv_grid = id_grid - displacement
    # This is not an exact inverse of the grid
1859
    inv_grid = id_grid.sub_(displacement)
1860
1861

    # Get points from bboxes
1862
    points = bounding_boxes[:, [[0, 1], [2, 1], [2, 3], [0, 3]]].reshape(-1, 2)
1863
1864
1865
1866
1867
    if points.is_floating_point():
        points = points.ceil_()
    index_xy = points.to(dtype=torch.long)
    index_x, index_y = index_xy[:, 0], index_xy[:, 1]

1868
    # Transform points:
Philip Meier's avatar
Philip Meier committed
1869
    t_size = torch.tensor(canvas_size[::-1], device=displacement.device, dtype=displacement.dtype)
1870
    transformed_points = inv_grid[0, index_y, index_x, :].add_(1).mul_(0.5 * t_size).sub_(0.5)
1871

1872
    transformed_points = transformed_points.reshape(-1, 4, 2)
1873
    out_bbox_mins, out_bbox_maxs = torch.aminmax(transformed_points, dim=1)
1874
1875
    out_bboxes = clamp_bounding_boxes(
        torch.cat([out_bbox_mins, out_bbox_maxs], dim=1).to(bounding_boxes.dtype),
1876
        format=datapoints.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
1877
        canvas_size=canvas_size,
1878
    )
1879

1880
    return convert_format_bounding_boxes(
1881
        out_bboxes, old_format=datapoints.BoundingBoxFormat.XYXY, new_format=format, inplace=True
1882
    ).reshape(original_shape)
1883
1884


1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
@_register_kernel_internal(elastic, datapoints.BoundingBoxes, datapoint_wrapper=False)
def _elastic_bounding_boxes_dispatch(
    inpt: datapoints.BoundingBoxes, displacement: torch.Tensor, **kwargs
) -> datapoints.BoundingBoxes:
    output = elastic_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size, displacement=displacement
    )
    return datapoints.BoundingBoxes.wrap_like(inpt, output)


1895
1896
1897
def elastic_mask(
    mask: torch.Tensor,
    displacement: torch.Tensor,
Philip Meier's avatar
Philip Meier committed
1898
    fill: datapoints._FillTypeJIT = None,
1899
) -> torch.Tensor:
1900
1901
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
1902
1903
1904
1905
        needs_squeeze = True
    else:
        needs_squeeze = False

1906
    output = elastic_image_tensor(mask, displacement=displacement, interpolation=InterpolationMode.NEAREST, fill=fill)
1907
1908
1909
1910
1911

    if needs_squeeze:
        output = output.squeeze(0)

    return output
1912
1913


1914
1915
1916
1917
1918
1919
1920
1921
1922
@_register_kernel_internal(elastic, datapoints.Mask, datapoint_wrapper=False)
def _elastic_mask_dispatch(
    inpt: datapoints.Mask, displacement: torch.Tensor, fill: datapoints._FillTypeJIT = None, **kwargs
) -> datapoints.Mask:
    output = elastic_mask(inpt.as_subclass(torch.Tensor), displacement=displacement, fill=fill)
    return datapoints.Mask.wrap_like(inpt, output)


@_register_kernel_internal(elastic, datapoints.Video)
1923
1924
1925
def elastic_video(
    video: torch.Tensor,
    displacement: torch.Tensor,
1926
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
Philip Meier's avatar
Philip Meier committed
1927
    fill: datapoints._FillTypeJIT = None,
1928
) -> torch.Tensor:
1929
    return elastic_image_tensor(video, displacement, interpolation=interpolation, fill=fill)
1930
1931


1932
def center_crop(inpt: datapoints._InputTypeJIT, output_size: List[int]) -> datapoints._InputTypeJIT:
1933
1934
1935
1936
1937
1938
1939
    if torch.jit.is_scripting():
        return center_crop_image_tensor(inpt, output_size=output_size)

    _log_api_usage_once(center_crop)

    kernel = _get_kernel(center_crop, type(inpt))
    return kernel(inpt, output_size=output_size)
1940
1941


1942
1943
def _center_crop_parse_output_size(output_size: List[int]) -> List[int]:
    if isinstance(output_size, numbers.Number):
1944
1945
        s = int(output_size)
        return [s, s]
1946
    elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
1947
        return [output_size[0], output_size[0]]
1948
1949
    else:
        return list(output_size)
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968


def _center_crop_compute_padding(crop_height: int, crop_width: int, image_height: int, image_width: int) -> List[int]:
    return [
        (crop_width - image_width) // 2 if crop_width > image_width else 0,
        (crop_height - image_height) // 2 if crop_height > image_height else 0,
        (crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
        (crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
    ]


def _center_crop_compute_crop_anchor(
    crop_height: int, crop_width: int, image_height: int, image_width: int
) -> Tuple[int, int]:
    crop_top = int(round((image_height - crop_height) / 2.0))
    crop_left = int(round((image_width - crop_width) / 2.0))
    return crop_top, crop_left


1969
@_register_kernel_internal(center_crop, torch.Tensor)
1970
@_register_kernel_internal(center_crop, datapoints.Image)
1971
def center_crop_image_tensor(image: torch.Tensor, output_size: List[int]) -> torch.Tensor:
1972
    crop_height, crop_width = _center_crop_parse_output_size(output_size)
1973
1974
1975
1976
    shape = image.shape
    if image.numel() == 0:
        return image.reshape(shape[:-2] + (crop_height, crop_width))
    image_height, image_width = shape[-2:]
1977
1978
1979

    if crop_height > image_height or crop_width > image_width:
        padding_ltrb = _center_crop_compute_padding(crop_height, crop_width, image_height, image_width)
1980
        image = torch_pad(image, _parse_pad_padding(padding_ltrb), value=0.0)
1981

1982
        image_height, image_width = image.shape[-2:]
1983
        if crop_width == image_width and crop_height == image_height:
1984
            return image
1985
1986

    crop_top, crop_left = _center_crop_compute_crop_anchor(crop_height, crop_width, image_height, image_width)
1987
    return image[..., crop_top : (crop_top + crop_height), crop_left : (crop_left + crop_width)]
1988
1989


1990
@_register_kernel_internal(center_crop, PIL.Image.Image)
1991
def center_crop_image_pil(image: PIL.Image.Image, output_size: List[int]) -> PIL.Image.Image:
1992
    crop_height, crop_width = _center_crop_parse_output_size(output_size)
Philip Meier's avatar
Philip Meier committed
1993
    image_height, image_width = get_size_image_pil(image)
1994
1995
1996

    if crop_height > image_height or crop_width > image_width:
        padding_ltrb = _center_crop_compute_padding(crop_height, crop_width, image_height, image_width)
1997
        image = pad_image_pil(image, padding_ltrb, fill=0)
1998

Philip Meier's avatar
Philip Meier committed
1999
        image_height, image_width = get_size_image_pil(image)
2000
        if crop_width == image_width and crop_height == image_height:
2001
            return image
2002
2003

    crop_top, crop_left = _center_crop_compute_crop_anchor(crop_height, crop_width, image_height, image_width)
2004
    return crop_image_pil(image, crop_top, crop_left, crop_height, crop_width)
2005
2006


2007
2008
def center_crop_bounding_boxes(
    bounding_boxes: torch.Tensor,
2009
    format: datapoints.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
2010
    canvas_size: Tuple[int, int],
2011
    output_size: List[int],
2012
) -> Tuple[torch.Tensor, Tuple[int, int]]:
2013
    crop_height, crop_width = _center_crop_parse_output_size(output_size)
Philip Meier's avatar
Philip Meier committed
2014
    crop_top, crop_left = _center_crop_compute_crop_anchor(crop_height, crop_width, *canvas_size)
2015
2016
2017
    return crop_bounding_boxes(
        bounding_boxes, format, top=crop_top, left=crop_left, height=crop_height, width=crop_width
    )
2018
2019


2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
@_register_kernel_internal(center_crop, datapoints.BoundingBoxes, datapoint_wrapper=False)
def _center_crop_bounding_boxes_dispatch(
    inpt: datapoints.BoundingBoxes, output_size: List[int]
) -> datapoints.BoundingBoxes:
    output, canvas_size = center_crop_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size, output_size=output_size
    )
    return datapoints.BoundingBoxes.wrap_like(inpt, output, canvas_size=canvas_size)


@_register_kernel_internal(center_crop, datapoints.Mask)
2031
2032
2033
def center_crop_mask(mask: torch.Tensor, output_size: List[int]) -> torch.Tensor:
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
2034
2035
2036
2037
        needs_squeeze = True
    else:
        needs_squeeze = False

2038
    output = center_crop_image_tensor(image=mask, output_size=output_size)
2039
2040
2041
2042
2043

    if needs_squeeze:
        output = output.squeeze(0)

    return output
2044
2045


2046
@_register_kernel_internal(center_crop, datapoints.Video)
2047
2048
2049
2050
def center_crop_video(video: torch.Tensor, output_size: List[int]) -> torch.Tensor:
    return center_crop_image_tensor(video, output_size)


2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
def resized_crop(
    inpt: datapoints._InputTypeJIT,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    antialias: Optional[Union[str, bool]] = "warn",
) -> datapoints._InputTypeJIT:
2061
    if torch.jit.is_scripting():
2062
        return resized_crop_image_tensor(
2063
2064
2065
2066
2067
2068
2069
2070
            inpt,
            top=top,
            left=left,
            height=height,
            width=width,
            size=size,
            interpolation=interpolation,
            antialias=antialias,
2071
        )
2072

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
    _log_api_usage_once(resized_crop)

    kernel = _get_kernel(resized_crop, type(inpt))
    return kernel(
        inpt,
        top=top,
        left=left,
        height=height,
        width=width,
        size=size,
        interpolation=interpolation,
        antialias=antialias,
    )
2086

2087
2088

@_register_kernel_internal(resized_crop, torch.Tensor)
2089
@_register_kernel_internal(resized_crop, datapoints.Image)
2090
def resized_crop_image_tensor(
2091
    image: torch.Tensor,
2092
2093
2094
2095
2096
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
2097
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
2098
    antialias: Optional[Union[str, bool]] = "warn",
2099
) -> torch.Tensor:
2100
2101
    image = crop_image_tensor(image, top, left, height, width)
    return resize_image_tensor(image, size, interpolation=interpolation, antialias=antialias)
2102
2103
2104


def resized_crop_image_pil(
2105
    image: PIL.Image.Image,
2106
2107
2108
2109
2110
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
2111
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
2112
) -> PIL.Image.Image:
2113
2114
    image = crop_image_pil(image, top, left, height, width)
    return resize_image_pil(image, size, interpolation=interpolation)
2115
2116


2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
@_register_kernel_internal(resized_crop, PIL.Image.Image)
def resized_crop_image_pil_dispatch(
    image: PIL.Image.Image,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    antialias: Optional[Union[str, bool]] = "warn",
) -> PIL.Image.Image:
    if antialias is False:
        warnings.warn("Anti-alias option is always applied for PIL Image input. Argument antialias is ignored.")
    return resized_crop_image_pil(
        image,
        top=top,
        left=left,
        height=height,
        width=width,
        size=size,
        interpolation=interpolation,
    )


2141
2142
def resized_crop_bounding_boxes(
    bounding_boxes: torch.Tensor,
2143
    format: datapoints.BoundingBoxFormat,
2144
2145
2146
2147
2148
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
2149
) -> Tuple[torch.Tensor, Tuple[int, int]]:
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
    bounding_boxes, canvas_size = crop_bounding_boxes(bounding_boxes, format, top, left, height, width)
    return resize_bounding_boxes(bounding_boxes, canvas_size=canvas_size, size=size)


@_register_kernel_internal(resized_crop, datapoints.BoundingBoxes, datapoint_wrapper=False)
def _resized_crop_bounding_boxes_dispatch(
    inpt: datapoints.BoundingBoxes, top: int, left: int, height: int, width: int, size: List[int], **kwargs
) -> datapoints.BoundingBoxes:
    output, canvas_size = resized_crop_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, top=top, left=left, height=height, width=width, size=size
    )
    return datapoints.BoundingBoxes.wrap_like(inpt, output, canvas_size=canvas_size)
2162
2163


2164
def resized_crop_mask(
2165
2166
2167
2168
2169
2170
2171
    mask: torch.Tensor,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
) -> torch.Tensor:
2172
2173
    mask = crop_mask(mask, top, left, height, width)
    return resize_mask(mask, size)
2174
2175


2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
@_register_kernel_internal(resized_crop, datapoints.Mask, datapoint_wrapper=False)
def _resized_crop_mask_dispatch(
    inpt: datapoints.Mask, top: int, left: int, height: int, width: int, size: List[int], **kwargs
) -> datapoints.Mask:
    output = resized_crop_mask(
        inpt.as_subclass(torch.Tensor), top=top, left=left, height=height, width=width, size=size
    )
    return datapoints.Mask.wrap_like(inpt, output)


@_register_kernel_internal(resized_crop, datapoints.Video)
2187
2188
2189
2190
2191
2192
2193
def resized_crop_video(
    video: torch.Tensor,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
2194
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
2195
    antialias: Optional[Union[str, bool]] = "warn",
2196
2197
2198
2199
2200
2201
) -> torch.Tensor:
    return resized_crop_image_tensor(
        video, top, left, height, width, antialias=antialias, size=size, interpolation=interpolation
    )


2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
@_register_explicit_noop(datapoints.BoundingBoxes, datapoints.Mask, warn_passthrough=True)
def five_crop(
    inpt: datapoints._InputTypeJIT, size: List[int]
) -> Tuple[
    datapoints._InputTypeJIT,
    datapoints._InputTypeJIT,
    datapoints._InputTypeJIT,
    datapoints._InputTypeJIT,
    datapoints._InputTypeJIT,
]:
2212
2213
2214
2215
2216
2217
2218
    if torch.jit.is_scripting():
        return five_crop_image_tensor(inpt, size=size)

    _log_api_usage_once(five_crop)

    kernel = _get_kernel(five_crop, type(inpt))
    return kernel(inpt, size=size)
2219
2220


2221
2222
def _parse_five_crop_size(size: List[int]) -> List[int]:
    if isinstance(size, numbers.Number):
2223
2224
        s = int(size)
        size = [s, s]
2225
    elif isinstance(size, (tuple, list)) and len(size) == 1:
2226
2227
        s = size[0]
        size = [s, s]
2228
2229
2230
2231
2232
2233
2234

    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")

    return size


2235
@_register_five_ten_crop_kernel(five_crop, torch.Tensor)
2236
@_register_five_ten_crop_kernel(five_crop, datapoints.Image)
2237
def five_crop_image_tensor(
2238
    image: torch.Tensor, size: List[int]
2239
2240
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
    crop_height, crop_width = _parse_five_crop_size(size)
2241
    image_height, image_width = image.shape[-2:]
2242
2243

    if crop_width > image_width or crop_height > image_height:
2244
        raise ValueError(f"Requested crop size {size} is bigger than input size {(image_height, image_width)}")
2245

2246
2247
2248
2249
2250
    tl = crop_image_tensor(image, 0, 0, crop_height, crop_width)
    tr = crop_image_tensor(image, 0, image_width - crop_width, crop_height, crop_width)
    bl = crop_image_tensor(image, image_height - crop_height, 0, crop_height, crop_width)
    br = crop_image_tensor(image, image_height - crop_height, image_width - crop_width, crop_height, crop_width)
    center = center_crop_image_tensor(image, [crop_height, crop_width])
2251
2252
2253
2254

    return tl, tr, bl, br, center


2255
@_register_five_ten_crop_kernel(five_crop, PIL.Image.Image)
2256
def five_crop_image_pil(
2257
    image: PIL.Image.Image, size: List[int]
2258
2259
) -> Tuple[PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, PIL.Image.Image]:
    crop_height, crop_width = _parse_five_crop_size(size)
Philip Meier's avatar
Philip Meier committed
2260
    image_height, image_width = get_size_image_pil(image)
2261
2262

    if crop_width > image_width or crop_height > image_height:
2263
        raise ValueError(f"Requested crop size {size} is bigger than input size {(image_height, image_width)}")
2264

2265
2266
2267
2268
2269
    tl = crop_image_pil(image, 0, 0, crop_height, crop_width)
    tr = crop_image_pil(image, 0, image_width - crop_width, crop_height, crop_width)
    bl = crop_image_pil(image, image_height - crop_height, 0, crop_height, crop_width)
    br = crop_image_pil(image, image_height - crop_height, image_width - crop_width, crop_height, crop_width)
    center = center_crop_image_pil(image, [crop_height, crop_width])
2270
2271
2272
2273

    return tl, tr, bl, br, center


2274
@_register_five_ten_crop_kernel(five_crop, datapoints.Video)
2275
2276
2277
2278
2279
2280
def five_crop_video(
    video: torch.Tensor, size: List[int]
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
    return five_crop_image_tensor(video, size)


2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
@_register_explicit_noop(datapoints.BoundingBoxes, datapoints.Mask, warn_passthrough=True)
def ten_crop(
    inpt: Union[datapoints._ImageTypeJIT, datapoints._VideoTypeJIT], size: List[int], vertical_flip: bool = False
) -> Tuple[
    datapoints._InputTypeJIT,
    datapoints._InputTypeJIT,
    datapoints._InputTypeJIT,
    datapoints._InputTypeJIT,
    datapoints._InputTypeJIT,
    datapoints._InputTypeJIT,
    datapoints._InputTypeJIT,
    datapoints._InputTypeJIT,
    datapoints._InputTypeJIT,
    datapoints._InputTypeJIT,
]:
2296
2297
2298
2299
2300
2301
2302
    if torch.jit.is_scripting():
        return ten_crop_image_tensor(inpt, size=size, vertical_flip=vertical_flip)

    _log_api_usage_once(ten_crop)

    kernel = _get_kernel(ten_crop, type(inpt))
    return kernel(inpt, size=size, vertical_flip=vertical_flip)
2303
2304


2305
@_register_five_ten_crop_kernel(ten_crop, torch.Tensor)
2306
@_register_five_ten_crop_kernel(ten_crop, datapoints.Image)
Philip Meier's avatar
Philip Meier committed
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
def ten_crop_image_tensor(
    image: torch.Tensor, size: List[int], vertical_flip: bool = False
) -> Tuple[
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
]:
    non_flipped = five_crop_image_tensor(image, size)
2322
2323

    if vertical_flip:
2324
        image = vertical_flip_image_tensor(image)
2325
    else:
2326
        image = horizontal_flip_image_tensor(image)
2327

Philip Meier's avatar
Philip Meier committed
2328
    flipped = five_crop_image_tensor(image, size)
2329

Philip Meier's avatar
Philip Meier committed
2330
    return non_flipped + flipped
2331
2332


2333
@_register_five_ten_crop_kernel(ten_crop, PIL.Image.Image)
Philip Meier's avatar
Philip Meier committed
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
def ten_crop_image_pil(
    image: PIL.Image.Image, size: List[int], vertical_flip: bool = False
) -> Tuple[
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
]:
    non_flipped = five_crop_image_pil(image, size)
2349
2350

    if vertical_flip:
2351
        image = vertical_flip_image_pil(image)
2352
    else:
2353
        image = horizontal_flip_image_pil(image)
2354

Philip Meier's avatar
Philip Meier committed
2355
2356
2357
2358
2359
    flipped = five_crop_image_pil(image, size)

    return non_flipped + flipped


2360
@_register_five_ten_crop_kernel(ten_crop, datapoints.Video)
Philip Meier's avatar
Philip Meier committed
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
def ten_crop_video(
    video: torch.Tensor, size: List[int], vertical_flip: bool = False
) -> Tuple[
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
]:
2375
    return ten_crop_image_tensor(video, size, vertical_flip=vertical_flip)