test_transforms.py 10.5 KB
Newer Older
1
2
3
4
import torch
import torchvision.transforms as transforms
import unittest
import random
5
import numpy as np
6
7
8
9
10
11
12
13
from PIL import Image
try:
    import accimage
except ImportError:
    accimage = None


GRACE_HOPPER = 'assets/grace_hopper_517x606.jpg'
14

15

16
class Tester(unittest.TestCase):
17

18
19
20
21
    def test_crop(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
22
23
        owidth = random.randint(5, (width - 2) / 2) * 2

24
        img = torch.ones(3, height, width)
25
26
27
        oh1 = (height - oheight) // 2
        ow1 = (width - owidth) // 2
        imgnarrow = img[:, oh1:oh1 + oheight, ow1:ow1 + owidth]
28
29
30
31
32
33
34
        imgnarrow.fill_(0)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        assert result.sum() == 0, "height: " + str(height) + " width: " \
35
                                  + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
36
37
38
39
40
41
42
43
44
        oheight += 1
        owidth += 1
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        sum1 = result.sum()
        assert sum1 > 1, "height: " + str(height) + " width: " \
45
                         + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
46
        oheight += 1
47
        owidth += 1
48
49
50
51
52
53
54
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        sum2 = result.sum()
        assert sum2 > 0, "height: " + str(height) + " width: " \
55
                         + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
56
        assert sum2 > sum1, "height: " + str(height) + " width: " \
57
                            + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
58
59
60
61
62

    def test_scale(self):
        height = random.randint(24, 32) * 2
        width = random.randint(24, 32) * 2
        osize = random.randint(5, 12) * 2
63

64
65
66
67
68
69
70
71
        img = torch.ones(3, height, width)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.Scale(osize),
            transforms.ToTensor(),
        ])(img)
        assert osize in result.size()
        if height < width:
72
            assert result.size(1) <= result.size(2)
73
74
75
        elif width < height:
            assert result.size(1) >= result.size(2)

76
77
78
79
80
81
82
83
84
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.Scale([osize, osize]),
            transforms.ToTensor(),
        ])(img)
        assert osize in result.size()
        assert result.size(1) == osize
        assert result.size(2) == osize

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        oheight = random.randint(5, 12) * 2
        owidth = random.randint(5, 12) * 2
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.Scale((owidth, oheight)),
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == oheight
        assert result.size(2) == owidth

        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.Scale([owidth, oheight]),
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == oheight
        assert result.size(2) == owidth

103
104
105
106
    def test_random_crop(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
107
        owidth = random.randint(5, (width - 2) / 2) * 2
108
109
110
111
112
113
114
115
116
        img = torch.ones(3, height, width)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == oheight
        assert result.size(2) == owidth

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        padding = random.randint(1, 20)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth), padding=padding),
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == oheight
        assert result.size(2) == owidth

    def test_pad(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = torch.ones(3, height, width)
        padding = random.randint(1, 20)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.Pad(padding),
            transforms.ToTensor(),
        ])(img)
136
137
        assert result.size(1) == height + 2 * padding
        assert result.size(2) == width + 2 * padding
Soumith Chintala's avatar
Soumith Chintala committed
138
139
140
141
142

    def test_lambda(self):
        trans = transforms.Lambda(lambda x: x.add(10))
        x = torch.randn(10)
        y = trans(x)
143
        assert (y.equal(torch.add(x, 10)))
Soumith Chintala's avatar
Soumith Chintala committed
144
145
146
147

        trans = transforms.Lambda(lambda x: x.add_(10))
        x = torch.randn(10)
        y = trans(x)
148
149
        assert (y.equal(x))

150
151
152
153
154
155
156
157
158
159
160
161
162
163
    def test_to_tensor(self):
        channels = 3
        height, width = 4, 4
        trans = transforms.ToTensor()
        input_data = torch.ByteTensor(channels, height, width).random_(0, 255).float().div_(255)
        img = transforms.ToPILImage()(input_data)
        output = trans(img)
        assert np.allclose(input_data.numpy(), output.numpy())

        ndarray = np.random.randint(low=0, high=255, size=(height, width, channels))
        output = trans(ndarray)
        expected_output = ndarray.transpose((2, 0, 1)) / 255.0
        assert np.allclose(output.numpy(), expected_output)

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_to_tensor(self):
        trans = transforms.ToTensor()

        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
        assert np.allclose(output.numpy(), expected_output.numpy())

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_resize(self):
        trans = transforms.Compose([
            transforms.Scale(256, interpolation=Image.LINEAR),
            transforms.ToTensor(),
        ])

        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
        self.assertLess(np.abs((expected_output - output).mean()), 1e-3)
        self.assertLess((expected_output - output).var(), 1e-5)
        # note the high absolute tolerance
        assert np.allclose(output.numpy(), expected_output.numpy(), atol=5e-2)

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_crop(self):
        trans = transforms.Compose([
            transforms.CenterCrop(256),
            transforms.ToTensor(),
        ])

        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
        assert np.allclose(output.numpy(), expected_output.numpy())

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    def test_tensor_to_pil_image(self):
        trans = transforms.ToPILImage()
        to_tensor = transforms.ToTensor()

        img_data = torch.Tensor(3, 4, 4).uniform_()
        img = trans(img_data)
        assert img.getbands() == ('R', 'G', 'B')
        r, g, b = img.split()

        expected_output = img_data.mul(255).int().float().div(255)
        assert np.allclose(expected_output[0].numpy(), to_tensor(r).numpy())
        assert np.allclose(expected_output[1].numpy(), to_tensor(g).numpy())
        assert np.allclose(expected_output[2].numpy(), to_tensor(b).numpy())

        # single channel image
        img_data = torch.Tensor(1, 4, 4).uniform_()
        img = trans(img_data)
        assert img.getbands() == ('L',)
        l, = img.split()
        expected_output = img_data.mul(255).int().float().div(255)
        assert np.allclose(expected_output[0].numpy(), to_tensor(l).numpy())

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
    def test_tensor_gray_to_pil_image(self):
        trans = transforms.ToPILImage()
        to_tensor = transforms.ToTensor()

        img_data_byte = torch.ByteTensor(1, 4, 4).random_(0, 255)
        img_data_short = torch.ShortTensor(1, 4, 4).random_()
        img_data_int = torch.IntTensor(1, 4, 4).random_()

        img_byte = trans(img_data_byte)
        img_short = trans(img_data_short)
        img_int = trans(img_data_int)
        assert img_byte.mode == 'L'
        assert img_short.mode == 'I;16'
        assert img_int.mode == 'I'

        assert np.allclose(img_data_short.numpy(), to_tensor(img_short).numpy())
        assert np.allclose(img_data_int.numpy(), to_tensor(img_int).numpy())

243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
    def test_ndarray_to_pil_image(self):
        trans = transforms.ToPILImage()
        img_data = torch.ByteTensor(4, 4, 3).random_(0, 255).numpy()
        img = trans(img_data)
        assert img.getbands() == ('R', 'G', 'B')
        r, g, b = img.split()

        assert np.allclose(r, img_data[:, :, 0])
        assert np.allclose(g, img_data[:, :, 1])
        assert np.allclose(b, img_data[:, :, 2])

        # single channel image
        img_data = torch.ByteTensor(4, 4, 1).random_(0, 255).numpy()
        img = trans(img_data)
        assert img.getbands() == ('L',)
        l, = img.split()
        assert np.allclose(l, img_data[:, :, 0])
260

261
    def test_ndarray_bad_types_to_pil_image(self):
262
        trans = transforms.ToPILImage()
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
        with self.assertRaises(AssertionError):
            trans(np.ones([4, 4, 1], np.int64))
            trans(np.ones([4, 4, 1], np.uint16))
            trans(np.ones([4, 4, 1], np.uint32))
            trans(np.ones([4, 4, 1], np.float64))

    def test_ndarray_gray_float32_to_pil_image(self):
        trans = transforms.ToPILImage()
        img_data = torch.FloatTensor(4, 4, 1).random_().numpy()
        img = trans(img_data)
        assert img.mode == 'F'
        assert np.allclose(img, img_data[:, :, 0])

    def test_ndarray_gray_int16_to_pil_image(self):
        trans = transforms.ToPILImage()
        img_data = torch.ShortTensor(4, 4, 1).random_().numpy()
279
280
281
        img = trans(img_data)
        assert img.mode == 'I;16'
        assert np.allclose(img, img_data[:, :, 0])
282

283
284
285
286
287
288
289
    def test_ndarray_gray_int32_to_pil_image(self):
        trans = transforms.ToPILImage()
        img_data = torch.IntTensor(4, 4, 1).random_().numpy()
        img = trans(img_data)
        assert img.mode == 'I'
        assert np.allclose(img, img_data[:, :, 0])

290

291
292
if __name__ == '__main__':
    unittest.main()