datasets_utils.py 34.9 KB
Newer Older
1
2
3
4
5
6
7
import contextlib
import functools
import importlib
import inspect
import itertools
import os
import pathlib
8
import random
9
import shutil
10
import string
11
import struct
12
import tarfile
13
14
import unittest
import unittest.mock
15
import zipfile
16
from collections import defaultdict
17
18
19
20
from typing import Any, Callable, Dict, Iterator, List, Optional, Sequence, Tuple, Union

import PIL
import PIL.Image
21
import pytest
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import torch
import torchvision.datasets
import torchvision.io
from common_utils import get_tmp_dir, disable_console_output


__all__ = [
    "UsageError",
    "lazy_importer",
    "test_all_configs",
    "DatasetTestCase",
    "ImageDatasetTestCase",
    "VideoDatasetTestCase",
    "create_image_or_video_tensor",
    "create_image_file",
    "create_image_folder",
    "create_video_file",
    "create_video_folder",
40
41
    "make_tar",
    "make_zip",
42
    "create_random_string",
43
44
45
]


46
class UsageError(Exception):
47
48
49
50
    """Should be raised in case an error happens in the setup rather than the test."""


class LazyImporter:
Prabhat Roy's avatar
Prabhat Roy committed
51
    r"""Lazy importer for additional dependencies.
52
53
54
55
56
57
58
59
60
61
62

    Some datasets require additional packages that are no direct dependencies of torchvision. Instances of this class
    provide modules listed in MODULES as attributes. They are only imported when accessed.

    """
    MODULES = (
        "av",
        "lmdb",
        "pycocotools",
        "requests",
        "scipy.io",
Philip Meier's avatar
Philip Meier committed
63
        "scipy.sparse",
64
65
66
    )

    def __init__(self):
67
        modules = defaultdict(list)
68
        for module in self.MODULES:
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
            module, *submodules = module.split(".", 1)
            if submodules:
                modules[module].append(submodules[0])
            else:
                # This introduces the module so that it is known when we later iterate over the dictionary.
                modules.__missing__(module)

        for module, submodules in modules.items():
            # We need the quirky 'module=module' and submodules=submodules arguments to the lambda since otherwise the
            # lookup for these would happen at runtime rather than at definition. Thus, without it, every property
            # would try to import the last item in 'modules'
            setattr(
                type(self),
                module,
                property(lambda self, module=module, submodules=submodules: LazyImporter._import(module, submodules)),
            )
85
86

    @staticmethod
87
    def _import(package, subpackages):
88
        try:
89
            module = importlib.import_module(package)
90
91
        except ImportError as error:
            raise UsageError(
92
93
                f"Failed to import module '{package}'. "
                f"This probably means that the current test case needs '{package}' installed, "
94
                f"but it is not a dependency of torchvision. "
95
                f"You need to install it manually, for example 'pip install {package}'."
96
97
            ) from error

98
99
100
101
102
        for name in subpackages:
            importlib.import_module(f".{name}", package=package)

        return module

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

lazy_importer = LazyImporter()


def requires_lazy_imports(*modules):
    def outer_wrapper(fn):
        @functools.wraps(fn)
        def inner_wrapper(*args, **kwargs):
            for module in modules:
                getattr(lazy_importer, module.replace(".", "_"))
            return fn(*args, **kwargs)

        return inner_wrapper

    return outer_wrapper


def test_all_configs(test):
    """Decorator to run test against all configurations.

123
124
125
126
    Add this as decorator to an arbitrary test to run it against all configurations. This includes
    :attr:`DatasetTestCase.DEFAULT_CONFIG` and :attr:`DatasetTestCase.ADDITIONAL_CONFIGS`.

    The current configuration is provided as the first parameter for the test:
127
128
129

    .. code-block::

130
        @test_all_configs()
131
132
        def test_foo(self, config):
            pass
133
134
135
136
137

    .. note::

        This will try to remove duplicate configurations. During this process it will not not preserve a potential
        ordering of the configurations or an inner ordering of a configuration.
138
139
    """

140
141
    def maybe_remove_duplicates(configs):
        try:
142
            return [dict(config_) for config_ in {tuple(sorted(config.items())) for config in configs}]
143
144
145
146
147
        except TypeError:
            # A TypeError will be raised if a value of any config is not hashable, e.g. a list. In that case duplicate
            # removal would be a lot more elaborate and we simply bail out.
            return configs

148
149
    @functools.wraps(test)
    def wrapper(self):
150
151
152
153
154
155
156
157
158
159
160
161
        configs = []
        if self.DEFAULT_CONFIG is not None:
            configs.append(self.DEFAULT_CONFIG)
        if self.ADDITIONAL_CONFIGS is not None:
            configs.extend(self.ADDITIONAL_CONFIGS)

        if not configs:
            configs = [self._KWARG_DEFAULTS.copy()]
        else:
            configs = maybe_remove_duplicates(configs)

        for config in configs:
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
            with self.subTest(**config):
                test(self, config)

    return wrapper


def combinations_grid(**kwargs):
    """Creates a grid of input combinations.

    Each element in the returned sequence is a dictionary containing one possible combination as values.

    Example:
        >>> combinations_grid(foo=("bar", "baz"), spam=("eggs", "ham"))
        [
            {'foo': 'bar', 'spam': 'eggs'},
            {'foo': 'bar', 'spam': 'ham'},
            {'foo': 'baz', 'spam': 'eggs'},
            {'foo': 'baz', 'spam': 'ham'}
        ]
    """
    return [dict(zip(kwargs.keys(), values)) for values in itertools.product(*kwargs.values())]


class DatasetTestCase(unittest.TestCase):
    """Abstract base class for all dataset testcases.

    You have to overwrite the following class attributes:

        - DATASET_CLASS (torchvision.datasets.VisionDataset): Class of dataset to be tested.
        - FEATURE_TYPES (Sequence[Any]): Types of the elements returned by index access of the dataset. Instead of
            providing these manually, you can instead subclass ``ImageDatasetTestCase`` or ``VideoDatasetTestCase```to
193
194
            get a reasonable default, that should work for most cases. Each entry of the sequence may be a tuple,
            to indicate multiple possible values.
195
196
197

    Optionally, you can overwrite the following class attributes:

198
199
200
201
202
203
204
        - DEFAULT_CONFIG (Dict[str, Any]): Config that will be used by default. If omitted, this defaults to all
            keyword arguments of the dataset minus ``transform``, ``target_transform``, ``transforms``, and
            ``download``. Overwrite this if you want to use a default value for a parameter for which the dataset does
            not provide one.
        - ADDITIONAL_CONFIGS (Sequence[Dict[str, Any]]): Additional configs that should be tested. Each dictionary can
            contain an arbitrary combination of dataset parameters that are **not** ``transform``, ``target_transform``,
            ``transforms``, or ``download``.
205
206
207
208
209
210
211
212
213
214
        - REQUIRED_PACKAGES (Iterable[str]): Additional dependencies to use the dataset. If these packages are not
            available, the tests are skipped.

    Additionally, you need to overwrite the ``inject_fake_data()`` method that provides the data that the tests rely on.
    The fake data should resemble the original data as close as necessary, while containing only few examples. During
    the creation of the dataset check-, download-, and extract-functions from ``torchvision.datasets.utils`` are
    disabled.

    Without further configuration, the testcase will test if

215
216
    1. the dataset raises a :class:`FileNotFoundError` or a :class:`RuntimeError` if the data files are not found or
       corrupted,
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
    2. the dataset inherits from `torchvision.datasets.VisionDataset`,
    3. the dataset can be turned into a string,
    4. the feature types of a returned example matches ``FEATURE_TYPES``,
    5. the number of examples matches the injected fake data, and
    6. the dataset calls ``transform``, ``target_transform``, or ``transforms`` if available when accessing data.

    Case 3. to 6. are tested against all configurations in ``CONFIGS``.

    To add dataset-specific tests, create a new method that takes no arguments with ``test_`` as a name prefix:

    .. code-block::

        def test_foo(self):
            pass

    If you want to run the test against all configs, add the ``@test_all_configs`` decorator to the definition and
    accept a single argument:

    .. code-block::

        @test_all_configs
        def test_bar(self, config):
            pass

    Within the test you can use the ``create_dataset()`` method that yields the dataset as well as additional
    information provided by the ``ìnject_fake_data()`` method:

    .. code-block::

        def test_baz(self):
            with self.create_dataset() as (dataset, info):
                pass
    """

    DATASET_CLASS = None
    FEATURE_TYPES = None

254
255
    DEFAULT_CONFIG = None
    ADDITIONAL_CONFIGS = None
256
257
    REQUIRED_PACKAGES = None

258
    # These keyword arguments are checked by test_transforms in case they are available in DATASET_CLASS.
259
260
261
262
263
    _TRANSFORM_KWARGS = {
        "transform",
        "target_transform",
        "transforms",
    }
264
    # These keyword arguments get a 'special' treatment and should not be set in DEFAULT_CONFIG or ADDITIONAL_CONFIGS.
265
266
267
268
    _SPECIAL_KWARGS = {
        *_TRANSFORM_KWARGS,
        "download",
    }
269
270
271
272
273
274
275

    # These fields are populated during setupClass() within _populate_private_class_attributes()

    # This will be a dictionary containing all keyword arguments with their respective default values extracted from
    # the dataset constructor.
    _KWARG_DEFAULTS = None
    # This will be a set of all _SPECIAL_KWARGS that the dataset constructor takes.
276
277
    _HAS_SPECIAL_KWARG = None

278
    # These functions are disabled during dataset creation in create_dataset().
279
280
281
282
283
284
285
286
287
288
289
    _CHECK_FUNCTIONS = {
        "check_md5",
        "check_integrity",
    }
    _DOWNLOAD_EXTRACT_FUNCTIONS = {
        "download_url",
        "download_file_from_google_drive",
        "extract_archive",
        "download_and_extract_archive",
    }

290
291
292
293
294
295
296
297
298
299
300
    def dataset_args(self, tmpdir: str, config: Dict[str, Any]) -> Sequence[Any]:
        """Define positional arguments passed to the dataset.

        .. note::

            The default behavior is only valid if the dataset to be tested has ``root`` as the only required parameter.
            Otherwise you need to overwrite this method.

        Args:
            tmpdir (str): Path to a temporary directory. For most cases this acts as root directory for the dataset
                to be created and in turn also for the fake data injected here.
301
302
            config (Dict[str, Any]): Configuration that will be passed to the dataset constructor. It provides at least
                fields for all dataset parameters with default values.
303
304
305
306
307
308
309

        Returns:
            (Tuple[str]): ``tmpdir`` which corresponds to ``root`` for most datasets.
        """
        return (tmpdir,)

    def inject_fake_data(self, tmpdir: str, config: Dict[str, Any]) -> Union[int, Dict[str, Any]]:
310
311
        """Inject fake data for dataset into a temporary directory.

312
313
314
315
        During the creation of the dataset the download and extract logic is disabled. Thus, the fake data injected
        here needs to resemble the raw data, i.e. the state of the dataset directly after the files are downloaded and
        potentially extracted.

316
317
318
        Args:
            tmpdir (str): Path to a temporary directory. For most cases this acts as root directory for the dataset
                to be created and in turn also for the fake data injected here.
319
320
            config (Dict[str, Any]): Configuration that will be passed to the dataset constructor. It provides at least
                fields for all dataset parameters with default values.
321
322
323

        Needs to return one of the following:

324
            1. (int): Number of examples in the dataset to be created, or
325
            2. (Dict[str, Any]): Additional information about the injected fake data. Must contain the field
326
                ``"num_examples"`` that corresponds to the number of examples in the dataset to be created.
327
328
329
330
331
332
333
334
        """
        raise NotImplementedError("You need to provide fake data in order for the tests to run.")

    @contextlib.contextmanager
    def create_dataset(
        self,
        config: Optional[Dict[str, Any]] = None,
        inject_fake_data: bool = True,
335
        patch_checks: Optional[bool] = None,
336
337
338
339
        **kwargs: Any,
    ) -> Iterator[Tuple[torchvision.datasets.VisionDataset, Dict[str, Any]]]:
        r"""Create the dataset in a temporary directory.

340
341
342
343
344
345
346
347
        The configuration passed to the dataset is populated to contain at least all parameters with default values.
        For this the following order of precedence is used:

        1. Parameters in :attr:`kwargs`.
        2. Configuration in :attr:`config`.
        3. Configuration in :attr:`~DatasetTestCase.DEFAULT_CONFIG`.
        4. Default parameters of the dataset.

348
        Args:
349
            config (Optional[Dict[str, Any]]): Configuration that will be used to create the dataset.
350
351
            inject_fake_data (bool): If ``True`` (default) inject the fake data with :meth:`.inject_fake_data` before
                creating the dataset.
352
353
            patch_checks (Optional[bool]): If ``True`` disable integrity check logic while creating the dataset. If
                omitted defaults to the same value as ``inject_fake_data``.
354
355
356
357
358
359
360
361
            **kwargs (Any): Additional parameters passed to the dataset. These parameters take precedence in case they
                overlap with ``config``.

        Yields:
            dataset (torchvision.dataset.VisionDataset): Dataset.
            info (Dict[str, Any]): Additional information about the injected fake data. See :meth:`.inject_fake_data`
                for details.
        """
362
363
        if patch_checks is None:
            patch_checks = inject_fake_data
364
365

        special_kwargs, other_kwargs = self._split_kwargs(kwargs)
366
367
368
369
370
371
372
373
374

        complete_config = self._KWARG_DEFAULTS.copy()
        if self.DEFAULT_CONFIG:
            complete_config.update(self.DEFAULT_CONFIG)
        if config:
            complete_config.update(config)
        if other_kwargs:
            complete_config.update(other_kwargs)

375
376
        if "download" in self._HAS_SPECIAL_KWARG and special_kwargs.get("download", False):
            # override download param to False param if its default is truthy
377
            special_kwargs["download"] = False
378

379
380
381
        patchers = self._patch_download_extract()
        if patch_checks:
            patchers.update(self._patch_checks())
382
383

        with get_tmp_dir() as tmpdir:
384
385
            args = self.dataset_args(tmpdir, complete_config)
            info = self._inject_fake_data(tmpdir, complete_config) if inject_fake_data else None
386

387
            with self._maybe_apply_patches(patchers), disable_console_output():
388
                dataset = self.DATASET_CLASS(*args, **complete_config, **special_kwargs)
389

390
            yield dataset, info
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413

    @classmethod
    def setUpClass(cls):
        cls._verify_required_public_class_attributes()
        cls._populate_private_class_attributes()
        cls._process_optional_public_class_attributes()
        super().setUpClass()

    @classmethod
    def _verify_required_public_class_attributes(cls):
        if cls.DATASET_CLASS is None:
            raise UsageError(
                "The class attribute 'DATASET_CLASS' needs to be overwritten. "
                "It should contain the class of the dataset to be tested."
            )
        if cls.FEATURE_TYPES is None:
            raise UsageError(
                "The class attribute 'FEATURE_TYPES' needs to be overwritten. "
                "It should contain a sequence of types that the dataset returns when accessed by index."
            )

    @classmethod
    def _populate_private_class_attributes(cls):
414
415
416
417
418
419
420
421
422
423
424
        defaults = []
        for cls_ in cls.DATASET_CLASS.__mro__:
            if cls_ is torchvision.datasets.VisionDataset:
                break

            argspec = inspect.getfullargspec(cls_.__init__)

            if not argspec.defaults:
                continue

            defaults.append(
425
426
                {
                    kwarg: default
427
                    for kwarg, default in zip(argspec.args[-len(argspec.defaults) :], argspec.defaults)
428
429
                    if not kwarg.startswith("_")
                }
430
431
432
433
434
435
436
437
            )

            if not argspec.varkw:
                break

        kwarg_defaults = dict()
        for config in reversed(defaults):
            kwarg_defaults.update(config)
438

439
440
441
442
        has_special_kwargs = set()
        for name in cls._SPECIAL_KWARGS:
            if name not in kwarg_defaults:
                continue
443

444
445
446
447
448
            del kwarg_defaults[name]
            has_special_kwargs.add(name)

        cls._KWARG_DEFAULTS = kwarg_defaults
        cls._HAS_SPECIAL_KWARG = has_special_kwargs
449
450
451

    @classmethod
    def _process_optional_public_class_attributes(cls):
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
        def check_config(config, name):
            special_kwargs = tuple(f"'{name}'" for name in cls._SPECIAL_KWARGS if name in config)
            if special_kwargs:
                raise UsageError(
                    f"{name} contains a value for the parameter(s) {', '.join(special_kwargs)}. "
                    f"These are handled separately by the test case and should not be set here. "
                    f"If you need to test some custom behavior regarding these parameters, "
                    f"you need to write a custom test (*not* test case), e.g. test_custom_transform()."
                )

        if cls.DEFAULT_CONFIG is not None:
            check_config(cls.DEFAULT_CONFIG, "DEFAULT_CONFIG")

        if cls.ADDITIONAL_CONFIGS is not None:
            for idx, config in enumerate(cls.ADDITIONAL_CONFIGS):
                check_config(config, f"CONFIGS[{idx}]")

        if cls.REQUIRED_PACKAGES:
            missing_pkgs = []
            for pkg in cls.REQUIRED_PACKAGES:
                try:
473
                    importlib.import_module(pkg)
474
475
476
477
                except ImportError:
                    missing_pkgs.append(f"'{pkg}'")

            if missing_pkgs:
478
                raise unittest.SkipTest(
479
480
                    f"The package(s) {', '.join(missing_pkgs)} are required to load the dataset "
                    f"'{cls.DATASET_CLASS.__name__}', but are not installed."
481
482
483
484
485
486
487
                )

    def _split_kwargs(self, kwargs):
        special_kwargs = kwargs.copy()
        other_kwargs = {key: special_kwargs.pop(key) for key in set(special_kwargs.keys()) - self._SPECIAL_KWARGS}
        return special_kwargs, other_kwargs

488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
    def _inject_fake_data(self, tmpdir, config):
        info = self.inject_fake_data(tmpdir, config)
        if info is None:
            raise UsageError(
                "The method 'inject_fake_data' needs to return at least an integer indicating the number of "
                "examples for the current configuration."
            )
        elif isinstance(info, int):
            info = dict(num_examples=info)
        elif not isinstance(info, dict):
            raise UsageError(
                f"The additional information returned by the method 'inject_fake_data' must be either an "
                f"integer indicating the number of examples for the current configuration or a dictionary with "
                f"the same content. Got {type(info)} instead."
            )
        elif "num_examples" not in info:
            raise UsageError(
                "The information dictionary returned by the method 'inject_fake_data' must contain a "
                "'num_examples' field that holds the number of examples for the current configuration."
            )
        return info

    def _patch_download_extract(self):
        module = inspect.getmodule(self.DATASET_CLASS).__name__
        return {unittest.mock.patch(f"{module}.{function}") for function in self._DOWNLOAD_EXTRACT_FUNCTIONS}
513

514
    def _patch_checks(self):
515
        module = inspect.getmodule(self.DATASET_CLASS).__name__
516
517
518
519
        return {unittest.mock.patch(f"{module}.{function}", return_value=True) for function in self._CHECK_FUNCTIONS}

    @contextlib.contextmanager
    def _maybe_apply_patches(self, patchers):
520
521
        with contextlib.ExitStack() as stack:
            mocks = {}
522
            for patcher in patchers:
523
                with contextlib.suppress(AttributeError):
524
525
                    mocks[patcher.target] = stack.enter_context(patcher)
            yield mocks
526

527
    def test_not_found_or_corrupted(self):
528
        with pytest.raises((FileNotFoundError, RuntimeError)):
529
530
531
532
533
            with self.create_dataset(inject_fake_data=False):
                pass

    def test_smoke(self):
        with self.create_dataset() as (dataset, _):
534
            assert isinstance(dataset, torchvision.datasets.VisionDataset)
535
536
537
538

    @test_all_configs
    def test_str_smoke(self, config):
        with self.create_dataset(config) as (dataset, _):
539
            assert isinstance(str(dataset), str)
540
541
542
543
544
545

    @test_all_configs
    def test_feature_types(self, config):
        with self.create_dataset(config) as (dataset, _):
            example = dataset[0]

546
547
548
            if len(self.FEATURE_TYPES) > 1:
                actual = len(example)
                expected = len(self.FEATURE_TYPES)
549
550
551
552
                assert (
                    actual == expected
                ), "The number of the returned features does not match the the number of elements in FEATURE_TYPES: "
                f"{actual} != {expected}"
553
554
            else:
                example = (example,)
555
556
557

            for idx, (feature, expected_feature_type) in enumerate(zip(example, self.FEATURE_TYPES)):
                with self.subTest(idx=idx):
558
                    assert isinstance(feature, expected_feature_type)
559
560
561
562

    @test_all_configs
    def test_num_examples(self, config):
        with self.create_dataset(config) as (dataset, info):
563
            assert len(dataset) == info["num_examples"]
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

    @test_all_configs
    def test_transforms(self, config):
        mock = unittest.mock.Mock(wraps=lambda *args: args[0] if len(args) == 1 else args)
        for kwarg in self._TRANSFORM_KWARGS:
            if kwarg not in self._HAS_SPECIAL_KWARG:
                continue

            mock.reset_mock()

            with self.subTest(kwarg=kwarg):
                with self.create_dataset(config, **{kwarg: mock}) as (dataset, _):
                    dataset[0]

                mock.assert_called()


class ImageDatasetTestCase(DatasetTestCase):
    """Abstract base class for image dataset testcases.

    - Overwrites the FEATURE_TYPES class attribute to expect a :class:`PIL.Image.Image` and an integer label.
    """

    FEATURE_TYPES = (PIL.Image.Image, int)

    @contextlib.contextmanager
    def create_dataset(
        self,
        config: Optional[Dict[str, Any]] = None,
        inject_fake_data: bool = True,
594
        patch_checks: Optional[bool] = None,
595
596
597
598
599
        **kwargs: Any,
    ) -> Iterator[Tuple[torchvision.datasets.VisionDataset, Dict[str, Any]]]:
        with super().create_dataset(
            config=config,
            inject_fake_data=inject_fake_data,
600
            patch_checks=patch_checks,
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
            **kwargs,
        ) as (dataset, info):
            # PIL.Image.open() only loads the image meta data upfront and keeps the file open until the first access
            # to the pixel data occurs. Trying to delete such a file results in an PermissionError on Windows. Thus, we
            # force-load opened images.
            # This problem only occurs during testing since some tests, e.g. DatasetTestCase.test_feature_types open an
            # image, but never use the underlying data. During normal operation it is reasonable to assume that the
            # user wants to work with the image he just opened rather than deleting the underlying file.
            with self._force_load_images():
                yield dataset, info

    @contextlib.contextmanager
    def _force_load_images(self):
        open = PIL.Image.open

        def new(fp, *args, **kwargs):
            image = open(fp, *args, **kwargs)
            if isinstance(fp, (str, pathlib.Path)):
                image.load()
            return image

        with unittest.mock.patch("PIL.Image.open", new=new):
            yield


class VideoDatasetTestCase(DatasetTestCase):
    """Abstract base class for video dataset testcases.

Philip Meier's avatar
Philip Meier committed
629
    - Overwrites the 'FEATURE_TYPES' class attribute to expect two :class:`torch.Tensor` s for the video and audio as
630
      well as an integer label.
Philip Meier's avatar
Philip Meier committed
631
632
633
634
    - Overwrites the 'REQUIRED_PACKAGES' class attribute to require PyAV (``av``).
    - Adds the 'DEFAULT_FRAMES_PER_CLIP' class attribute. If no 'frames_per_clip' is provided by 'inject_fake_data()'
        and it is the last parameter without a default value in the dataset constructor, the value of the
        'DEFAULT_FRAMES_PER_CLIP' class attribute is appended to the output.
635
636
637
638
639
    """

    FEATURE_TYPES = (torch.Tensor, torch.Tensor, int)
    REQUIRED_PACKAGES = ("av",)

Philip Meier's avatar
Philip Meier committed
640
641
642
643
    DEFAULT_FRAMES_PER_CLIP = 1

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
644
        self.dataset_args = self._set_default_frames_per_clip(self.dataset_args)
Philip Meier's avatar
Philip Meier committed
645
646
647

    def _set_default_frames_per_clip(self, inject_fake_data):
        argspec = inspect.getfullargspec(self.DATASET_CLASS.__init__)
648
        args_without_default = argspec.args[1 : (-len(argspec.defaults) if argspec.defaults else None)]
Philip Meier's avatar
Philip Meier committed
649
650
651
652
        frames_per_clip_last = args_without_default[-1] == "frames_per_clip"

        @functools.wraps(inject_fake_data)
        def wrapper(tmpdir, config):
653
654
655
656
657
            args = inject_fake_data(tmpdir, config)
            if frames_per_clip_last and len(args) == len(args_without_default) - 1:
                args = (*args, self.DEFAULT_FRAMES_PER_CLIP)

            return args
Philip Meier's avatar
Philip Meier committed
658
659
660

        return wrapper

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696

def create_image_or_video_tensor(size: Sequence[int]) -> torch.Tensor:
    r"""Create a random uint8 tensor.

    Args:
        size (Sequence[int]): Size of the tensor.
    """
    return torch.randint(0, 256, size, dtype=torch.uint8)


def create_image_file(
    root: Union[pathlib.Path, str], name: Union[pathlib.Path, str], size: Union[Sequence[int], int] = 10, **kwargs: Any
) -> pathlib.Path:
    """Create an image file from random data.

    Args:
        root (Union[str, pathlib.Path]): Root directory the image file will be placed in.
        name (Union[str, pathlib.Path]): Name of the image file.
        size (Union[Sequence[int], int]): Size of the image that represents the ``(num_channels, height, width)``. If
            scalar, the value is used for the height and width. If not provided, three channels are assumed.
        kwargs (Any): Additional parameters passed to :meth:`PIL.Image.Image.save`.

    Returns:
        pathlib.Path: Path to the created image file.
    """
    if isinstance(size, int):
        size = (size, size)
    if len(size) == 2:
        size = (3, *size)
    if len(size) != 3:
        raise UsageError(
            f"The 'size' argument should either be an int or a sequence of length 2 or 3. Got {len(size)} instead"
        )

    image = create_image_or_video_tensor(size)
    file = pathlib.Path(root) / name
697
698
699
700
701
702
703

    # torch (num_channels x height x width) -> PIL (width x height x num_channels)
    image = image.permute(2, 1, 0)
    # For grayscale images PIL doesn't use a channel dimension
    if image.shape[2] == 1:
        image = torch.squeeze(image, 2)
    PIL.Image.fromarray(image.numpy()).save(file, **kwargs)
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
    return file


def create_image_folder(
    root: Union[pathlib.Path, str],
    name: Union[pathlib.Path, str],
    file_name_fn: Callable[[int], str],
    num_examples: int,
    size: Optional[Union[Sequence[int], int, Callable[[int], Union[Sequence[int], int]]]] = None,
    **kwargs: Any,
) -> List[pathlib.Path]:
    """Create a folder of random images.

    Args:
        root (Union[str, pathlib.Path]): Root directory the image folder will be placed in.
        name (Union[str, pathlib.Path]): Name of the image folder.
        file_name_fn (Callable[[int], str]): Should return a file name if called with the file index.
        num_examples (int): Number of images to create.
        size (Optional[Union[Sequence[int], int, Callable[[int], Union[Sequence[int], int]]]]): Size of the images. If
            callable, will be called with the index of the corresponding file. If omitted, a random height and width
            between 3 and 10 pixels is selected on a per-image basis.
        kwargs (Any): Additional parameters passed to :func:`create_image_file`.

    Returns:
        List[pathlib.Path]: Paths to all created image files.

    .. seealso::

        - :func:`create_image_file`
    """
    if size is None:

        def size(idx: int) -> Tuple[int, int, int]:
            num_channels = 3
            height, width = torch.randint(3, 11, size=(2,), dtype=torch.int).tolist()
            return (num_channels, height, width)

    root = pathlib.Path(root) / name
742
    os.makedirs(root, exist_ok=True)
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804

    return [
        create_image_file(root, file_name_fn(idx), size=size(idx) if callable(size) else size, **kwargs)
        for idx in range(num_examples)
    ]


@requires_lazy_imports("av")
def create_video_file(
    root: Union[pathlib.Path, str],
    name: Union[pathlib.Path, str],
    size: Union[Sequence[int], int] = (1, 3, 10, 10),
    fps: float = 25,
    **kwargs: Any,
) -> pathlib.Path:
    """Create an video file from random data.

    Args:
        root (Union[str, pathlib.Path]): Root directory the video file will be placed in.
        name (Union[str, pathlib.Path]): Name of the video file.
        size (Union[Sequence[int], int]): Size of the video that represents the
            ``(num_frames, num_channels, height, width)``. If scalar, the value is used for the height and width.
            If not provided, ``num_frames=1`` and ``num_channels=3`` are assumed.
        fps (float): Frame rate in frames per second.
        kwargs (Any): Additional parameters passed to :func:`torchvision.io.write_video`.

    Returns:
        pathlib.Path: Path to the created image file.

    Raises:
        UsageError: If PyAV is not available.
    """
    if isinstance(size, int):
        size = (size, size)
    if len(size) == 2:
        size = (3, *size)
    if len(size) == 3:
        size = (1, *size)
    if len(size) != 4:
        raise UsageError(
            f"The 'size' argument should either be an int or a sequence of length 2, 3, or 4. Got {len(size)} instead"
        )

    video = create_image_or_video_tensor(size)
    file = pathlib.Path(root) / name
    torchvision.io.write_video(str(file), video.permute(0, 2, 3, 1), fps, **kwargs)
    return file


@requires_lazy_imports("av")
def create_video_folder(
    root: Union[str, pathlib.Path],
    name: Union[str, pathlib.Path],
    file_name_fn: Callable[[int], str],
    num_examples: int,
    size: Optional[Union[Sequence[int], int, Callable[[int], Union[Sequence[int], int]]]] = None,
    fps=25,
    **kwargs,
) -> List[pathlib.Path]:
    """Create a folder of random videos.

    Args:
805
806
        root (Union[str, pathlib.Path]): Root directory the video folder will be placed in.
        name (Union[str, pathlib.Path]): Name of the video folder.
807
        file_name_fn (Callable[[int], str]): Should return a file name if called with the file index.
808
        num_examples (int): Number of videos to create.
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
        size (Optional[Union[Sequence[int], int, Callable[[int], Union[Sequence[int], int]]]]): Size of the videos. If
            callable, will be called with the index of the corresponding file. If omitted, a random even height and
            width between 4 and 10 pixels is selected on a per-video basis.
        fps (float): Frame rate in frames per second.
        kwargs (Any): Additional parameters passed to :func:`create_video_file`.

    Returns:
        List[pathlib.Path]: Paths to all created video files.

    Raises:
        UsageError: If PyAV is not available.

    .. seealso::

        - :func:`create_video_file`
    """
    if size is None:

        def size(idx):
            num_frames = 1
            num_channels = 3
            # The 'libx264' video codec, which is the default of torchvision.io.write_video, requires the height and
            # width of the video to be divisible by 2.
            height, width = (torch.randint(2, 6, size=(2,), dtype=torch.int) * 2).tolist()
            return (num_frames, num_channels, height, width)

    root = pathlib.Path(root) / name
836
    os.makedirs(root, exist_ok=True)
837
838

    return [
839
        create_video_file(root, file_name_fn(idx), size=size(idx) if callable(size) else size, **kwargs)
840
841
        for idx in range(num_examples)
    ]
842
843


844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
def _split_files_or_dirs(root, *files_or_dirs):
    files = set()
    dirs = set()
    for file_or_dir in files_or_dirs:
        path = pathlib.Path(file_or_dir)
        if not path.is_absolute():
            path = root / path
        if path.is_file():
            files.add(path)
        else:
            dirs.add(path)
            for sub_file_or_dir in path.glob("**/*"):
                if sub_file_or_dir.is_file():
                    files.add(sub_file_or_dir)
                else:
                    dirs.add(sub_file_or_dir)

    if root in dirs:
        dirs.remove(root)

    return files, dirs


def _make_archive(root, name, *files_or_dirs, opener, adder, remove=True):
    archive = pathlib.Path(root) / name
    files, dirs = _split_files_or_dirs(root, *files_or_dirs)

    with opener(archive) as fh:
        for file in files:
            adder(fh, file, file.relative_to(root))

    if remove:
        for file in files:
            os.remove(file)
        for dir in dirs:
            shutil.rmtree(dir, ignore_errors=True)

    return archive


def make_tar(root, name, *files_or_dirs, remove=True, compression=None):
    # TODO: detect compression from name
    return _make_archive(
        root,
        name,
        *files_or_dirs,
        opener=lambda archive: tarfile.open(archive, f"w:{compression}" if compression else "w"),
        adder=lambda fh, file, relative_file: fh.add(file, arcname=relative_file),
        remove=remove,
    )


def make_zip(root, name, *files_or_dirs, remove=True):
    return _make_archive(
        root,
        name,
        *files_or_dirs,
        opener=lambda archive: zipfile.ZipFile(archive, "w"),
        adder=lambda fh, file, relative_file: fh.write(file, arcname=relative_file),
        remove=remove,
    )


907
908
909
910
911
912
913
914
915
916
917
918
919
def create_random_string(length: int, *digits: str) -> str:
    """Create a random string.

    Args:
        length (int): Number of characters in the generated string.
        *characters (str): Characters to sample from. If omitted defaults to :attr:`string.ascii_lowercase`.
    """
    if not digits:
        digits = string.ascii_lowercase
    else:
        digits = "".join(itertools.chain(*digits))

    return "".join(random.choice(digits) for _ in range(length))
920
921


922
923
924
925
926
927
928
929
def make_fake_pfm_file(h, w, file_name):
    values = list(range(3 * h * w))
    # Note: we pack everything in little endian: -1.0, and "<"
    content = f"PF \n{w} {h} \n-1.0\n".encode() + struct.pack("<" + "f" * len(values), *values)
    with open(file_name, "wb") as f:
        f.write(content)


930
931
932
933
934
935
def make_fake_flo_file(h, w, file_name):
    """Creates a fake flow file in .flo format."""
    values = list(range(2 * h * w))
    content = b"PIEH" + struct.pack("i", w) + struct.pack("i", h) + struct.pack("f" * len(values), *values)
    with open(file_name, "wb") as f:
        f.write(content)