shufflenetv2.py 5.96 KB
Newer Older
Bar's avatar
Bar committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import functools

import torch
import torch.nn as nn

__all__ = ['ShuffleNetV2', 'shufflenetv2',
           'shufflenetv2_x0_5', 'shufflenetv2_x1_0',
           'shufflenetv2_x1_5', 'shufflenetv2_x2_0']

model_urls = {
    'shufflenetv2_x0.5':
        'https://github.com/barrh/Shufflenet-v2-Pytorch/releases/download/v0.1.0/shufflenetv2_x0.5-f707e7126e.pt',
    'shufflenetv2_x1.0':
        'https://github.com/barrh/Shufflenet-v2-Pytorch/releases/download/v0.1.0/shufflenetv2_x1-5666bf0f80.pt',
    'shufflenetv2_x1.5': None,
    'shufflenetv2_x2.0': None,
}


def channel_shuffle(x, groups):
    batchsize, num_channels, height, width = x.data.size()
    channels_per_group = num_channels // groups

    # reshape
    x = x.view(batchsize, groups,
               channels_per_group, height, width)

    x = torch.transpose(x, 1, 2).contiguous()

    # flatten
    x = x.view(batchsize, -1, height, width)

    return x


class InvertedResidual(nn.Module):
    def __init__(self, inp, oup, stride):
        super(InvertedResidual, self).__init__()

        if not (1 <= stride <= 3):
            raise ValueError('illegal stride value')
        self.stride = stride

        branch_features = oup // 2
        assert (self.stride != 1) or (inp == branch_features << 1)

        pw_conv11 = functools.partial(nn.Conv2d, kernel_size=1, stride=1, padding=0, bias=False)
        dw_conv33 = functools.partial(self.depthwise_conv,
                                      kernel_size=3, stride=self.stride, padding=1)

        if self.stride > 1:
            self.branch1 = nn.Sequential(
                dw_conv33(inp, inp),
                nn.BatchNorm2d(inp),
                pw_conv11(inp, branch_features),
                nn.BatchNorm2d(branch_features),
                nn.ReLU(inplace=True),
            )

        self.branch2 = nn.Sequential(
            pw_conv11(inp if (self.stride > 1) else branch_features, branch_features),
            nn.BatchNorm2d(branch_features),
            nn.ReLU(inplace=True),
            dw_conv33(branch_features, branch_features),
            nn.BatchNorm2d(branch_features),
            pw_conv11(branch_features, branch_features),
            nn.BatchNorm2d(branch_features),
            nn.ReLU(inplace=True),
        )

    @staticmethod
    def depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False):
        return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i)

    def forward(self, x):
        if self.stride == 1:
            x1, x2 = x.chunk(2, dim=1)
            out = torch.cat((x1, self.branch2(x2)), dim=1)
        else:
            out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)

        out = channel_shuffle(out, 2)

        return out


class ShuffleNetV2(nn.Module):
88
    def __init__(self, num_classes=1000, width_mult=1):
Bar's avatar
Bar committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
        super(ShuffleNetV2, self).__init__()

        try:
            self.stage_out_channels = self._getStages(float(width_mult))
        except KeyError:
            raise ValueError('width_mult {} is not supported'.format(width_mult))

        input_channels = 3
        output_channels = self.stage_out_channels[0]
        self.conv1 = nn.Sequential(
            nn.Conv2d(input_channels, output_channels, 3, 2, 1, bias=False),
            nn.BatchNorm2d(output_channels),
            nn.ReLU(inplace=True),
        )
        input_channels = output_channels

        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        stage_names = ['stage{}'.format(i) for i in [2, 3, 4]]
        stage_repeats = [4, 8, 4]
        for name, repeats, output_channels in zip(
                stage_names, stage_repeats, self.stage_out_channels[1:]):
            seq = [InvertedResidual(input_channels, output_channels, 2)]
            for i in range(repeats - 1):
                seq.append(InvertedResidual(output_channels, output_channels, 1))
            setattr(self, name, nn.Sequential(*seq))
            input_channels = output_channels

        output_channels = self.stage_out_channels[-1]
        self.conv5 = nn.Sequential(
            nn.Conv2d(input_channels, output_channels, 1, 1, 0, bias=False),
            nn.BatchNorm2d(output_channels),
            nn.ReLU(inplace=True),
        )

        self.fc = nn.Linear(output_channels, num_classes)

    def forward(self, x):
        x = self.conv1(x)
        x = self.maxpool(x)
        x = self.stage2(x)
        x = self.stage3(x)
        x = self.stage4(x)
        x = self.conv5(x)
        x = x.mean([2, 3])  # globalpool
        x = self.fc(x)
        return x

    @staticmethod
    def _getStages(mult):
        stages = {
            '0.5': [24, 48, 96, 192, 1024],
            '1.0': [24, 116, 232, 464, 1024],
            '1.5': [24, 176, 352, 704, 1024],
            '2.0': [24, 244, 488, 976, 2048],
        }
        return stages[str(mult)]


148
149
def shufflenetv2(pretrained=False, num_classes=1000, width_mult=1, **kwargs):
    model = ShuffleNetV2(num_classes=num_classes, width_mult=width_mult)
Bar's avatar
Bar committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

    if pretrained:
        # change width_mult to float
        if isinstance(width_mult, int):
            width_mult = float(width_mult)
        model_type = ('_'.join([ShuffleNetV2.__name__, 'x' + str(width_mult)]))
        try:
            model_url = model_urls[model_type.lower()]
        except KeyError:
            raise ValueError('model {} is not support'.format(model_type))
        if model_url is None:
            raise NotImplementedError('pretrained {} is not supported'.format(model_type))
        model.load_state_dict(torch.utils.model_zoo.load_url(model_url))

    return model


167
168
def shufflenetv2_x0_5(pretrained=False, num_classes=1000, **kwargs):
    return shufflenetv2(pretrained, num_classes, 0.5)
Bar's avatar
Bar committed
169
170


171
172
def shufflenetv2_x1_0(pretrained=False, num_classes=1000, **kwargs):
    return shufflenetv2(pretrained, num_classes, 1)
Bar's avatar
Bar committed
173
174


175
176
def shufflenetv2_x1_5(pretrained=False, num_classes=1000, **kwargs):
    return shufflenetv2(pretrained, num_classes, 1.5)
Bar's avatar
Bar committed
177
178


179
180
def shufflenetv2_x2_0(pretrained=False, num_classes=1000, **kwargs):
    return shufflenetv2(pretrained, num_classes, 2)