"src/include/migraph/erase.hpp" did not exist on "91570d04fd475a24b9cb109bf54a114479e0967d"
shufflenetv2.py 6.13 KB
Newer Older
Bar's avatar
Bar committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import functools

import torch
import torch.nn as nn

__all__ = ['ShuffleNetV2', 'shufflenetv2',
           'shufflenetv2_x0_5', 'shufflenetv2_x1_0',
           'shufflenetv2_x1_5', 'shufflenetv2_x2_0']

model_urls = {
    'shufflenetv2_x0.5':
        'https://github.com/barrh/Shufflenet-v2-Pytorch/releases/download/v0.1.0/shufflenetv2_x0.5-f707e7126e.pt',
    'shufflenetv2_x1.0':
        'https://github.com/barrh/Shufflenet-v2-Pytorch/releases/download/v0.1.0/shufflenetv2_x1-5666bf0f80.pt',
    'shufflenetv2_x1.5': None,
    'shufflenetv2_x2.0': None,
}


def channel_shuffle(x, groups):
    batchsize, num_channels, height, width = x.data.size()
    channels_per_group = num_channels // groups

    # reshape
    x = x.view(batchsize, groups,
               channels_per_group, height, width)

    x = torch.transpose(x, 1, 2).contiguous()

    # flatten
    x = x.view(batchsize, -1, height, width)

    return x


class InvertedResidual(nn.Module):
    def __init__(self, inp, oup, stride):
        super(InvertedResidual, self).__init__()

        if not (1 <= stride <= 3):
            raise ValueError('illegal stride value')
        self.stride = stride

        branch_features = oup // 2
        assert (self.stride != 1) or (inp == branch_features << 1)

        pw_conv11 = functools.partial(nn.Conv2d, kernel_size=1, stride=1, padding=0, bias=False)
        dw_conv33 = functools.partial(self.depthwise_conv,
                                      kernel_size=3, stride=self.stride, padding=1)

        if self.stride > 1:
            self.branch1 = nn.Sequential(
                dw_conv33(inp, inp),
                nn.BatchNorm2d(inp),
                pw_conv11(inp, branch_features),
                nn.BatchNorm2d(branch_features),
                nn.ReLU(inplace=True),
            )

        self.branch2 = nn.Sequential(
            pw_conv11(inp if (self.stride > 1) else branch_features, branch_features),
            nn.BatchNorm2d(branch_features),
            nn.ReLU(inplace=True),
            dw_conv33(branch_features, branch_features),
            nn.BatchNorm2d(branch_features),
            pw_conv11(branch_features, branch_features),
            nn.BatchNorm2d(branch_features),
            nn.ReLU(inplace=True),
        )

    @staticmethod
    def depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False):
        return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i)

    def forward(self, x):
        if self.stride == 1:
            x1, x2 = x.chunk(2, dim=1)
            out = torch.cat((x1, self.branch2(x2)), dim=1)
        else:
            out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)

        out = channel_shuffle(out, 2)

        return out


class ShuffleNetV2(nn.Module):
    def __init__(self, num_classes=1000, input_size=224, width_mult=1):
        super(ShuffleNetV2, self).__init__()

        try:
            self.stage_out_channels = self._getStages(float(width_mult))
        except KeyError:
            raise ValueError('width_mult {} is not supported'.format(width_mult))

        input_channels = 3
        output_channels = self.stage_out_channels[0]
        self.conv1 = nn.Sequential(
            nn.Conv2d(input_channels, output_channels, 3, 2, 1, bias=False),
            nn.BatchNorm2d(output_channels),
            nn.ReLU(inplace=True),
        )
        input_channels = output_channels

        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        stage_names = ['stage{}'.format(i) for i in [2, 3, 4]]
        stage_repeats = [4, 8, 4]
        for name, repeats, output_channels in zip(
                stage_names, stage_repeats, self.stage_out_channels[1:]):
            seq = [InvertedResidual(input_channels, output_channels, 2)]
            for i in range(repeats - 1):
                seq.append(InvertedResidual(output_channels, output_channels, 1))
            setattr(self, name, nn.Sequential(*seq))
            input_channels = output_channels

        output_channels = self.stage_out_channels[-1]
        self.conv5 = nn.Sequential(
            nn.Conv2d(input_channels, output_channels, 1, 1, 0, bias=False),
            nn.BatchNorm2d(output_channels),
            nn.ReLU(inplace=True),
        )

        self.fc = nn.Linear(output_channels, num_classes)

    def forward(self, x):
        x = self.conv1(x)
        x = self.maxpool(x)
        x = self.stage2(x)
        x = self.stage3(x)
        x = self.stage4(x)
        x = self.conv5(x)
        x = x.mean([2, 3])  # globalpool
        x = self.fc(x)
        return x

    @staticmethod
    def _getStages(mult):
        stages = {
            '0.5': [24, 48, 96, 192, 1024],
            '1.0': [24, 116, 232, 464, 1024],
            '1.5': [24, 176, 352, 704, 1024],
            '2.0': [24, 244, 488, 976, 2048],
        }
        return stages[str(mult)]


def shufflenetv2(pretrained=False, num_classes=1000, input_size=224, width_mult=1, **kwargs):
    model = ShuffleNetV2(num_classes=num_classes, input_size=input_size, width_mult=width_mult)

    if pretrained:
        # change width_mult to float
        if isinstance(width_mult, int):
            width_mult = float(width_mult)
        model_type = ('_'.join([ShuffleNetV2.__name__, 'x' + str(width_mult)]))
        try:
            model_url = model_urls[model_type.lower()]
        except KeyError:
            raise ValueError('model {} is not support'.format(model_type))
        if model_url is None:
            raise NotImplementedError('pretrained {} is not supported'.format(model_type))
        model.load_state_dict(torch.utils.model_zoo.load_url(model_url))

    return model


def shufflenetv2_x0_5(pretrained=False, num_classes=1000, input_size=224, **kwargs):
    return shufflenetv2(pretrained, num_classes, input_size, 0.5)


def shufflenetv2_x1_0(pretrained=False, num_classes=1000, input_size=224, **kwargs):
    return shufflenetv2(pretrained, num_classes, input_size, 1)


def shufflenetv2_x1_5(pretrained=False, num_classes=1000, input_size=224, **kwargs):
    return shufflenetv2(pretrained, num_classes, input_size, 1.5)


def shufflenetv2_x2_0(pretrained=False, num_classes=1000, input_size=224, **kwargs):
    return shufflenetv2(pretrained, num_classes, input_size, 2)