alexnet.py 1.67 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
import torch.nn as nn
import torch.utils.model_zoo as model_zoo


__all__ = ['AlexNet', 'alexnet']


model_urls = {
    'alexnet': 'https://s3.amazonaws.com/pytorch/models/alexnet-owt-4df8aa71.pth',
}


Soumith Chintala's avatar
Soumith Chintala committed
13
class AlexNet(nn.Module):
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
    def __init__(self, num_classes=1000):
        super(AlexNet, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(64, 192, kernel_size=5, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(192, 384, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(384, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
        )
        self.classifier = nn.Sequential(
            nn.Dropout(),
            nn.Linear(256 * 6 * 6, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(inplace=True),
            nn.Linear(4096, num_classes),
        )

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), 256 * 6 * 6)
        x = self.classifier(x)
        return x


def alexnet(pretrained=False):
    r"""AlexNet model architecture from the "One weird trick" paper.
    https://arxiv.org/abs/1404.5997
    """
    model = AlexNet()
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['alexnet']))
    return model