fakedata.py 2.65 KB
Newer Older
1
2
3
4
import torch
import torch.utils.data as data
from .. import transforms

Soumith Chintala's avatar
Soumith Chintala committed
5

6
7
8
9
10
11
12
13
14
15
16
class FakeData(data.Dataset):
    """A fake dataset that returns randomly generated images and returns them as PIL images

    Args:
        size (int, optional): Size of the dataset. Default: 1000 images
        image_size(tuple, optional): Size if the returned images. Default: (3, 224, 224)
        num_classes(int, optional): Number of classes in the datset. Default: 10
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
17
18
        random_offset (int): Offsets the index-based random seed used to
            generate each image. Default: 0
19
20
21

    """

22
23
    def __init__(self, size=1000, image_size=(3, 224, 224), num_classes=10,
                 transform=None, target_transform=None, random_offset=0):
24
25
26
27
28
        self.size = size
        self.num_classes = num_classes
        self.image_size = image_size
        self.transform = transform
        self.target_transform = target_transform
29
        self.random_offset = random_offset
30
31
32
33
34
35
36
37
38
39

    def __getitem__(self, index):
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is class_index of the target class.
        """
        # create random image that is consistent with the index id
Will Frey's avatar
Will Frey committed
40
41
        if index >= len(self):
            raise IndexError("{} index out of range".format(self.__class__.__name__))
42
        rng_state = torch.get_rng_state()
43
        torch.manual_seed(index + self.random_offset)
44
        img = torch.randn(*self.image_size)
vfdev's avatar
vfdev committed
45
        target = torch.randint(0, self.num_classes, size=(1,), dtype=torch.long)[0]
46
47
48
49
50
51
52
53
54
55
56
57
58
        torch.set_rng_state(rng_state)

        # convert to PIL Image
        img = transforms.ToPILImage()(img)
        if self.transform is not None:
            img = self.transform(img)
        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

    def __len__(self):
        return self.size
59
60
61
62
63
64
65
66
67

    def __repr__(self):
        fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
        fmt_str += '    Number of datapoints: {}\n'.format(self.__len__())
        tmp = '    Transforms (if any): '
        fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        tmp = '    Target Transforms (if any): '
        fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        return fmt_str