import torch import torch.utils.data as data from .. import transforms class FakeData(data.Dataset): """A fake dataset that returns randomly generated images and returns them as PIL images Args: size (int, optional): Size of the dataset. Default: 1000 images image_size(tuple, optional): Size if the returned images. Default: (3, 224, 224) num_classes(int, optional): Number of classes in the datset. Default: 10 transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. random_offset (int): Offsets the index-based random seed used to generate each image. Default: 0 """ def __init__(self, size=1000, image_size=(3, 224, 224), num_classes=10, transform=None, target_transform=None, random_offset=0): self.size = size self.num_classes = num_classes self.image_size = image_size self.transform = transform self.target_transform = target_transform self.random_offset = random_offset def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is class_index of the target class. """ # create random image that is consistent with the index id if index >= len(self): raise IndexError("{} index out of range".format(self.__class__.__name__)) rng_state = torch.get_rng_state() torch.manual_seed(index + self.random_offset) img = torch.randn(*self.image_size) target = torch.randint(0, self.num_classes, size=(1,), dtype=torch.long)[0] torch.set_rng_state(rng_state) # convert to PIL Image img = transforms.ToPILImage()(img) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self): return self.size def __repr__(self): fmt_str = 'Dataset ' + self.__class__.__name__ + '\n' fmt_str += ' Number of datapoints: {}\n'.format(self.__len__()) tmp = ' Transforms (if any): ' fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp))) tmp = ' Target Transforms (if any): ' fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp))) return fmt_str