"docs/vscode:/vscode.git/clone" did not exist on "bfadb5ea5fbd7197d72d517da8885433ef190953"
vgg.py 13.3 KB
Newer Older
1
2
from functools import partial
from typing import Union, List, Dict, Any, Optional, cast
3

4
import torch
5
import torch.nn as nn
6

7
from ..transforms._presets import ImageClassification, InterpolationMode
8
from ..utils import _log_api_usage_once
9
10
11
from ._api import WeightsEnum, Weights
from ._meta import _IMAGENET_CATEGORIES
from ._utils import handle_legacy_interface, _ovewrite_named_param
12
13
14


__all__ = [
15
    "VGG",
16
17
18
19
20
21
22
23
    "VGG11_Weights",
    "VGG11_BN_Weights",
    "VGG13_Weights",
    "VGG13_BN_Weights",
    "VGG16_Weights",
    "VGG16_BN_Weights",
    "VGG19_Weights",
    "VGG19_BN_Weights",
24
25
26
27
28
29
30
    "vgg11",
    "vgg11_bn",
    "vgg13",
    "vgg13_bn",
    "vgg16",
    "vgg16_bn",
    "vgg19",
31
    "vgg19_bn",
32
33
34
]


Soumith Chintala's avatar
Soumith Chintala committed
35
class VGG(nn.Module):
36
37
38
    def __init__(
        self, features: nn.Module, num_classes: int = 1000, init_weights: bool = True, dropout: float = 0.5
    ) -> None:
39
        super().__init__()
Kai Zhang's avatar
Kai Zhang committed
40
        _log_api_usage_once(self)
41
        self.features = features
42
        self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
43
44
45
        self.classifier = nn.Sequential(
            nn.Linear(512 * 7 * 7, 4096),
            nn.ReLU(True),
46
            nn.Dropout(p=dropout),
47
48
            nn.Linear(4096, 4096),
            nn.ReLU(True),
49
            nn.Dropout(p=dropout),
Karan Dwivedi's avatar
Karan Dwivedi committed
50
            nn.Linear(4096, num_classes),
51
        )
52
        if init_weights:
53
54
55
56
57
58
59
60
61
62
63
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
                    if m.bias is not None:
                        nn.init.constant_(m.bias, 0)
                elif isinstance(m, nn.BatchNorm2d):
                    nn.init.constant_(m.weight, 1)
                    nn.init.constant_(m.bias, 0)
                elif isinstance(m, nn.Linear):
                    nn.init.normal_(m.weight, 0, 0.01)
                    nn.init.constant_(m.bias, 0)
64

65
    def forward(self, x: torch.Tensor) -> torch.Tensor:
66
        x = self.features(x)
67
        x = self.avgpool(x)
68
        x = torch.flatten(x, 1)
69
70
71
72
        x = self.classifier(x)
        return x


73
74
def make_layers(cfg: List[Union[str, int]], batch_norm: bool = False) -> nn.Sequential:
    layers: List[nn.Module] = []
75
76
    in_channels = 3
    for v in cfg:
77
        if v == "M":
78
79
            layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
        else:
80
            v = cast(int, v)
81
82
83
84
85
86
87
88
89
            conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
            if batch_norm:
                layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
            else:
                layers += [conv2d, nn.ReLU(inplace=True)]
            in_channels = v
    return nn.Sequential(*layers)


90
cfgs: Dict[str, List[Union[str, int]]] = {
91
92
93
94
    "A": [64, "M", 128, "M", 256, 256, "M", 512, 512, "M", 512, 512, "M"],
    "B": [64, 64, "M", 128, 128, "M", 256, 256, "M", 512, 512, "M", 512, 512, "M"],
    "D": [64, 64, "M", 128, 128, "M", 256, 256, 256, "M", 512, 512, 512, "M", 512, 512, 512, "M"],
    "E": [64, 64, "M", 128, 128, "M", 256, 256, 256, 256, "M", 512, 512, 512, 512, "M", 512, 512, 512, 512, "M"],
95
96
97
}


98
99
def _vgg(cfg: str, batch_norm: bool, weights: Optional[WeightsEnum], progress: bool, **kwargs: Any) -> VGG:
    if weights is not None:
100
        kwargs["init_weights"] = False
101
102
        if weights.meta["categories"] is not None:
            _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
103
    model = VGG(make_layers(cfgs[cfg], batch_norm=batch_norm), **kwargs)
104
105
    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))
106
107
108
    return model


109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
_COMMON_META = {
    "task": "image_classification",
    "architecture": "VGG",
    "publication_year": 2014,
    "size": (224, 224),
    "min_size": (32, 32),
    "categories": _IMAGENET_CATEGORIES,
    "interpolation": InterpolationMode.BILINEAR,
    "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#alexnet-and-vgg",
}


class VGG11_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/vgg11-8a719046.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 132863336,
            "acc@1": 69.020,
            "acc@5": 88.628,
        },
    )
    DEFAULT = IMAGENET1K_V1


class VGG11_BN_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/vgg11_bn-6002323d.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 132868840,
            "acc@1": 70.370,
            "acc@5": 89.810,
        },
    )
    DEFAULT = IMAGENET1K_V1


class VGG13_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/vgg13-19584684.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 133047848,
            "acc@1": 69.928,
            "acc@5": 89.246,
        },
    )
    DEFAULT = IMAGENET1K_V1


class VGG13_BN_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/vgg13_bn-abd245e5.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 133053736,
            "acc@1": 71.586,
            "acc@5": 90.374,
        },
    )
    DEFAULT = IMAGENET1K_V1


class VGG16_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/vgg16-397923af.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 138357544,
            "acc@1": 71.592,
            "acc@5": 90.382,
        },
    )
    # We port the features of a VGG16 backbone trained by amdegroot because unlike the one on TorchVision, it uses the
    # same input standardization method as the paper. Only the `features` weights have proper values, those on the
    # `classifier` module are filled with nans.
    IMAGENET1K_FEATURES = Weights(
        url="https://download.pytorch.org/models/vgg16_features-amdegroot-88682ab5.pth",
        transforms=partial(
            ImageClassification,
            crop_size=224,
            mean=(0.48235, 0.45882, 0.40784),
            std=(1.0 / 255.0, 1.0 / 255.0, 1.0 / 255.0),
        ),
        meta={
            **_COMMON_META,
            "num_params": 138357544,
            "categories": None,
            "recipe": "https://github.com/amdegroot/ssd.pytorch#training-ssd",
            "acc@1": float("nan"),
            "acc@5": float("nan"),
        },
    )
    DEFAULT = IMAGENET1K_V1


class VGG16_BN_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/vgg16_bn-6c64b313.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 138365992,
            "acc@1": 73.360,
            "acc@5": 91.516,
        },
    )
    DEFAULT = IMAGENET1K_V1


class VGG19_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/vgg19-dcbb9e9d.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 143667240,
            "acc@1": 72.376,
            "acc@5": 90.876,
        },
    )
    DEFAULT = IMAGENET1K_V1


class VGG19_BN_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/vgg19_bn-c79401a0.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 143678248,
            "acc@1": 74.218,
            "acc@5": 91.842,
        },
    )
    DEFAULT = IMAGENET1K_V1


@handle_legacy_interface(weights=("pretrained", VGG11_Weights.IMAGENET1K_V1))
def vgg11(*, weights: Optional[VGG11_Weights] = None, progress: bool = True, **kwargs: Any) -> VGG:
255
    r"""VGG 11-layer model (configuration "A") from
256
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_.
257
    The required minimum input size of the model is 32x32.
258
259

    Args:
260
        weights (VGG11_Weights, optional): The pretrained weights for the model
261
        progress (bool): If True, displays a progress bar of the download to stderr
262
    """
263
    weights = VGG11_Weights.verify(weights)
264

265
    return _vgg("A", False, weights, progress, **kwargs)
266

267
268
269

@handle_legacy_interface(weights=("pretrained", VGG11_BN_Weights.IMAGENET1K_V1))
def vgg11_bn(*, weights: Optional[VGG11_BN_Weights] = None, progress: bool = True, **kwargs: Any) -> VGG:
270
    r"""VGG 11-layer model (configuration "A") with batch normalization
271
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_.
272
    The required minimum input size of the model is 32x32.
273
274

    Args:
275
        weights (VGG11_BN_Weights, optional): The pretrained weights for the model
276
        progress (bool): If True, displays a progress bar of the download to stderr
277
    """
278
279
280
    weights = VGG11_BN_Weights.verify(weights)

    return _vgg("A", True, weights, progress, **kwargs)
281
282


283
284
@handle_legacy_interface(weights=("pretrained", VGG13_Weights.IMAGENET1K_V1))
def vgg13(*, weights: Optional[VGG13_Weights] = None, progress: bool = True, **kwargs: Any) -> VGG:
285
    r"""VGG 13-layer model (configuration "B")
286
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_.
287
    The required minimum input size of the model is 32x32.
288
289

    Args:
290
        weights (VGG13_Weights, optional): The pretrained weights for the model
291
        progress (bool): If True, displays a progress bar of the download to stderr
292
    """
293
    weights = VGG13_Weights.verify(weights)
294

295
    return _vgg("B", False, weights, progress, **kwargs)
296

297
298
299

@handle_legacy_interface(weights=("pretrained", VGG13_BN_Weights.IMAGENET1K_V1))
def vgg13_bn(*, weights: Optional[VGG13_BN_Weights] = None, progress: bool = True, **kwargs: Any) -> VGG:
300
    r"""VGG 13-layer model (configuration "B") with batch normalization
301
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_.
302
    The required minimum input size of the model is 32x32.
303
304

    Args:
305
        weights (VGG13_BN_Weights, optional): The pretrained weights for the model
306
        progress (bool): If True, displays a progress bar of the download to stderr
307
    """
308
309
310
    weights = VGG13_BN_Weights.verify(weights)

    return _vgg("B", True, weights, progress, **kwargs)
311
312


313
314
@handle_legacy_interface(weights=("pretrained", VGG16_Weights.IMAGENET1K_V1))
def vgg16(*, weights: Optional[VGG16_Weights] = None, progress: bool = True, **kwargs: Any) -> VGG:
315
    r"""VGG 16-layer model (configuration "D")
316
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_.
317
    The required minimum input size of the model is 32x32.
318
319

    Args:
320
        weights (VGG16_Weights, optional): The pretrained weights for the model
321
        progress (bool): If True, displays a progress bar of the download to stderr
322
    """
323
    weights = VGG16_Weights.verify(weights)
324

325
    return _vgg("D", False, weights, progress, **kwargs)
326

327
328
329

@handle_legacy_interface(weights=("pretrained", VGG16_BN_Weights.IMAGENET1K_V1))
def vgg16_bn(*, weights: Optional[VGG16_BN_Weights] = None, progress: bool = True, **kwargs: Any) -> VGG:
330
    r"""VGG 16-layer model (configuration "D") with batch normalization
331
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_.
332
    The required minimum input size of the model is 32x32.
333
334

    Args:
335
        weights (VGG16_BN_Weights, optional): The pretrained weights for the model
336
        progress (bool): If True, displays a progress bar of the download to stderr
337
    """
338
339
340
    weights = VGG16_BN_Weights.verify(weights)

    return _vgg("D", True, weights, progress, **kwargs)
341
342


343
344
@handle_legacy_interface(weights=("pretrained", VGG19_Weights.IMAGENET1K_V1))
def vgg19(*, weights: Optional[VGG19_Weights] = None, progress: bool = True, **kwargs: Any) -> VGG:
345
    r"""VGG 19-layer model (configuration "E")
346
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_.
347
    The required minimum input size of the model is 32x32.
348
349

    Args:
350
        weights (VGG19_Weights, optional): The pretrained weights for the model
351
        progress (bool): If True, displays a progress bar of the download to stderr
352
    """
353
    weights = VGG19_Weights.verify(weights)
354

355
    return _vgg("E", False, weights, progress, **kwargs)
356

357
358
359

@handle_legacy_interface(weights=("pretrained", VGG19_BN_Weights.IMAGENET1K_V1))
def vgg19_bn(*, weights: Optional[VGG19_BN_Weights] = None, progress: bool = True, **kwargs: Any) -> VGG:
360
    r"""VGG 19-layer model (configuration 'E') with batch normalization
361
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_.
362
    The required minimum input size of the model is 32x32.
363
364

    Args:
365
        weights (VGG19_BN_Weights, optional): The pretrained weights for the model
366
        progress (bool): If True, displays a progress bar of the download to stderr
367
    """
368
369
370
    weights = VGG19_BN_Weights.verify(weights)

    return _vgg("E", True, weights, progress, **kwargs)