README.md 1.54 KB
Newer Older
1
2
3
4
5
6
7
8
# Semantic segmentation reference training scripts

This folder contains reference training scripts for semantic segmentation.
They serve as a log of how to train specific models, as provide baseline
training and evaluation scripts to quickly bootstrap research.

All models have been trained on 8x V100 GPUs.

9
10
11
12
13
14
You must modify the following flags:

`--data-path=/path/to/dataset`

`--nproc_per_node=<number_of_gpus_available>`

15
16
## fcn_resnet50
```
17
torchrun --nproc_per_node=8 train.py --lr 0.02 --dataset coco -b 4 --model fcn_resnet50 --aux-loss --weights-backbone ResNet50_Weights.IMAGENET1K_V1
18
19
```

20
21
## fcn_resnet101
```
22
torchrun --nproc_per_node=8 train.py --lr 0.02 --dataset coco -b 4 --model fcn_resnet101 --aux-loss --weights-backbone ResNet101_Weights.IMAGENET1K_V1
23
24
```

25
26
## deeplabv3_resnet50
```
27
torchrun --nproc_per_node=8 train.py --lr 0.02 --dataset coco -b 4 --model deeplabv3_resnet50 --aux-loss --weights-backbone ResNet50_Weights.IMAGENET1K_V1
28
29
```

30
31
## deeplabv3_resnet101
```
32
torchrun --nproc_per_node=8 train.py --lr 0.02 --dataset coco -b 4 --model deeplabv3_resnet101 --aux-loss --weights-backbone ResNet101_Weights.IMAGENET1K_V1
33
```
34
35
36

## deeplabv3_mobilenet_v3_large
```
37
torchrun --nproc_per_node=8 train.py --dataset coco -b 4 --model deeplabv3_mobilenet_v3_large --aux-loss --wd 0.000001 --weights-backbone MobileNet_V3_Large_Weights.IMAGENET1K_V1
38
39
40
41
```

## lraspp_mobilenet_v3_large
```
42
torchrun --nproc_per_node=8 train.py --dataset coco -b 4 --model lraspp_mobilenet_v3_large --wd 0.000001 --weights-backbone MobileNet_V3_Large_Weights.IMAGENET1K_V1
43
```