README.md 1.07 KB
Newer Older
1
2
3
4
5
6
7
8
# Semantic segmentation reference training scripts

This folder contains reference training scripts for semantic segmentation.
They serve as a log of how to train specific models, as provide baseline
training and evaluation scripts to quickly bootstrap research.

All models have been trained on 8x V100 GPUs.

9
10
11
12
13
14
You must modify the following flags:

`--data-path=/path/to/dataset`

`--nproc_per_node=<number_of_gpus_available>`

15
16
17
18
19
## fcn_resnet50
```
python -m torch.distributed.launch --nproc_per_node=8 --use_env train.py --lr 0.02 --dataset coco -b 4 --model fcn_resnet50 --aux-loss
```

20
21
22
23
24
## fcn_resnet101
```
python -m torch.distributed.launch --nproc_per_node=8 --use_env train.py --lr 0.02 --dataset coco -b 4 --model fcn_resnet101 --aux-loss
```

25
26
27
28
29
## deeplabv3_resnet50
```
python -m torch.distributed.launch --nproc_per_node=8 --use_env train.py --lr 0.02 --dataset coco -b 4 --model deeplabv3_resnet50 --aux-loss
```

30
31
32
33
## deeplabv3_resnet101
```
python -m torch.distributed.launch --nproc_per_node=8 --use_env train.py --lr 0.02 --dataset coco -b 4 --model deeplabv3_resnet101 --aux-loss
```