utils.py 13.3 KB
Newer Older
1
import copy
2
import datetime
3
import errno
4
import hashlib
5
import os
6
import time
7
8
from collections import defaultdict, deque, OrderedDict

9
10
11
12
import torch
import torch.distributed as dist


13
class SmoothedValue:
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
    """Track a series of values and provide access to smoothed values over a
    window or the global series average.
    """

    def __init__(self, window_size=20, fmt=None):
        if fmt is None:
            fmt = "{median:.4f} ({global_avg:.4f})"
        self.deque = deque(maxlen=window_size)
        self.total = 0.0
        self.count = 0
        self.fmt = fmt

    def update(self, value, n=1):
        self.deque.append(value)
        self.count += n
        self.total += value * n

    def synchronize_between_processes(self):
        """
        Warning: does not synchronize the deque!
        """
35
        t = reduce_across_processes([self.count, self.total])
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
        t = t.tolist()
        self.count = int(t[0])
        self.total = t[1]

    @property
    def median(self):
        d = torch.tensor(list(self.deque))
        return d.median().item()

    @property
    def avg(self):
        d = torch.tensor(list(self.deque), dtype=torch.float32)
        return d.mean().item()

    @property
    def global_avg(self):
        return self.total / self.count

    @property
    def max(self):
        return max(self.deque)

    @property
    def value(self):
        return self.deque[-1]

    def __str__(self):
        return self.fmt.format(
64
65
            median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value
        )
66
67


68
class MetricLogger:
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    def __init__(self, delimiter="\t"):
        self.meters = defaultdict(SmoothedValue)
        self.delimiter = delimiter

    def update(self, **kwargs):
        for k, v in kwargs.items():
            if isinstance(v, torch.Tensor):
                v = v.item()
            assert isinstance(v, (float, int))
            self.meters[k].update(v)

    def __getattr__(self, attr):
        if attr in self.meters:
            return self.meters[attr]
        if attr in self.__dict__:
            return self.__dict__[attr]
85
        raise AttributeError(f"'{type(self).__name__}' object has no attribute '{attr}'")
86
87
88
89

    def __str__(self):
        loss_str = []
        for name, meter in self.meters.items():
90
            loss_str.append(f"{name}: {str(meter)}")
91
92
93
94
95
96
97
98
99
100
101
102
        return self.delimiter.join(loss_str)

    def synchronize_between_processes(self):
        for meter in self.meters.values():
            meter.synchronize_between_processes()

    def add_meter(self, name, meter):
        self.meters[name] = meter

    def log_every(self, iterable, print_freq, header=None):
        i = 0
        if not header:
103
            header = ""
104
105
        start_time = time.time()
        end = time.time()
106
107
108
        iter_time = SmoothedValue(fmt="{avg:.4f}")
        data_time = SmoothedValue(fmt="{avg:.4f}")
        space_fmt = ":" + str(len(str(len(iterable)))) + "d"
109
        if torch.cuda.is_available():
110
111
112
113
114
115
116
117
118
119
120
            log_msg = self.delimiter.join(
                [
                    header,
                    "[{0" + space_fmt + "}/{1}]",
                    "eta: {eta}",
                    "{meters}",
                    "time: {time}",
                    "data: {data}",
                    "max mem: {memory:.0f}",
                ]
            )
121
        else:
122
123
124
            log_msg = self.delimiter.join(
                [header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}"]
            )
125
126
127
128
129
130
131
132
        MB = 1024.0 * 1024.0
        for obj in iterable:
            data_time.update(time.time() - end)
            yield obj
            iter_time.update(time.time() - end)
            if i % print_freq == 0:
                eta_seconds = iter_time.global_avg * (len(iterable) - i)
                eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
133
                if torch.cuda.is_available():
134
135
136
137
138
139
140
141
142
143
144
                    print(
                        log_msg.format(
                            i,
                            len(iterable),
                            eta=eta_string,
                            meters=str(self),
                            time=str(iter_time),
                            data=str(data_time),
                            memory=torch.cuda.max_memory_allocated() / MB,
                        )
                    )
145
                else:
146
147
148
149
150
                    print(
                        log_msg.format(
                            i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time)
                        )
                    )
151
152
153
154
            i += 1
            end = time.time()
        total_time = time.time() - start_time
        total_time_str = str(datetime.timedelta(seconds=int(total_time)))
155
        print(f"{header} Total time: {total_time_str}")
156
157


158
159
160
161
162
163
class ExponentialMovingAverage(torch.optim.swa_utils.AveragedModel):
    """Maintains moving averages of model parameters using an exponential decay.
    ``ema_avg = decay * avg_model_param + (1 - decay) * model_param``
    `torch.optim.swa_utils.AveragedModel <https://pytorch.org/docs/stable/optim.html#custom-averaging-strategies>`_
    is used to compute the EMA.
    """
164
165

    def __init__(self, model, decay, device="cpu"):
166
167
168
        def ema_avg(avg_model_param, model_param, num_averaged):
            return decay * avg_model_param + (1 - decay) * model_param

169
        super().__init__(model, device, ema_avg, use_buffers=True)
170

171

172
173
def accuracy(output, target, topk=(1,)):
    """Computes the accuracy over the k top predictions for the specified values of k"""
174
    with torch.inference_mode():
175
176
        maxk = max(topk)
        batch_size = target.size(0)
177
178
        if target.ndim == 2:
            target = target.max(dim=1)[1]
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

        _, pred = output.topk(maxk, 1, True, True)
        pred = pred.t()
        correct = pred.eq(target[None])

        res = []
        for k in topk:
            correct_k = correct[:k].flatten().sum(dtype=torch.float32)
            res.append(correct_k * (100.0 / batch_size))
        return res


def mkdir(path):
    try:
        os.makedirs(path)
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise


def setup_for_distributed(is_master):
    """
    This function disables printing when not in master process
    """
    import builtins as __builtin__
204

205
206
207
    builtin_print = __builtin__.print

    def print(*args, **kwargs):
208
        force = kwargs.pop("force", False)
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
        if is_master or force:
            builtin_print(*args, **kwargs)

    __builtin__.print = print


def is_dist_avail_and_initialized():
    if not dist.is_available():
        return False
    if not dist.is_initialized():
        return False
    return True


def get_world_size():
    if not is_dist_avail_and_initialized():
        return 1
    return dist.get_world_size()


def get_rank():
    if not is_dist_avail_and_initialized():
        return 0
    return dist.get_rank()


def is_main_process():
    return get_rank() == 0


def save_on_master(*args, **kwargs):
    if is_main_process():
        torch.save(*args, **kwargs)
242
243
244


def init_distributed_mode(args):
245
    if "RANK" in os.environ and "WORLD_SIZE" in os.environ:
246
        args.rank = int(os.environ["RANK"])
247
248
249
250
        args.world_size = int(os.environ["WORLD_SIZE"])
        args.gpu = int(os.environ["LOCAL_RANK"])
    elif "SLURM_PROCID" in os.environ:
        args.rank = int(os.environ["SLURM_PROCID"])
251
252
253
        args.gpu = args.rank % torch.cuda.device_count()
    elif hasattr(args, "rank"):
        pass
254
    else:
255
        print("Not using distributed mode")
256
257
258
259
260
261
        args.distributed = False
        return

    args.distributed = True

    torch.cuda.set_device(args.gpu)
262
    args.dist_backend = "nccl"
263
    print(f"| distributed init (rank {args.rank}): {args.dist_url}", flush=True)
264
265
266
    torch.distributed.init_process_group(
        backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank
    )
267
    torch.distributed.barrier()
268
    setup_for_distributed(args.rank == 0)
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289


def average_checkpoints(inputs):
    """Loads checkpoints from inputs and returns a model with averaged weights. Original implementation taken from:
    https://github.com/pytorch/fairseq/blob/a48f235636557b8d3bc4922a6fa90f3a0fa57955/scripts/average_checkpoints.py#L16

    Args:
      inputs (List[str]): An iterable of string paths of checkpoints to load from.
    Returns:
      A dict of string keys mapping to various values. The 'model' key
      from the returned dict should correspond to an OrderedDict mapping
      string parameter names to torch Tensors.
    """
    params_dict = OrderedDict()
    params_keys = None
    new_state = None
    num_models = len(inputs)
    for fpath in inputs:
        with open(fpath, "rb") as f:
            state = torch.load(
                f,
290
                map_location=(lambda s, _: torch.serialization.default_restore_location(s, "cpu")),
291
292
293
294
295
296
297
298
299
300
            )
        # Copies over the settings from the first checkpoint
        if new_state is None:
            new_state = state
        model_params = state["model"]
        model_params_keys = list(model_params.keys())
        if params_keys is None:
            params_keys = model_params_keys
        elif params_keys != model_params_keys:
            raise KeyError(
301
                f"For checkpoint {f}, expected list of params: {params_keys}, but found: {model_params_keys}"
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
            )
        for k in params_keys:
            p = model_params[k]
            if isinstance(p, torch.HalfTensor):
                p = p.float()
            if k not in params_dict:
                params_dict[k] = p.clone()
                # NOTE: clone() is needed in case of p is a shared parameter
            else:
                params_dict[k] += p
    averaged_params = OrderedDict()
    for k, v in params_dict.items():
        averaged_params[k] = v
        if averaged_params[k].is_floating_point():
            averaged_params[k].div_(num_models)
        else:
            averaged_params[k] //= num_models
    new_state["model"] = averaged_params
    return new_state


323
def store_model_weights(model, checkpoint_path, checkpoint_key="model", strict=True):
324
325
326
327
328
329
330
331
332
    """
    This method can be used to prepare weights files for new models. It receives as
    input a model architecture and a checkpoint from the training script and produces
    a file with the weights ready for release.

    Examples:
        from torchvision import models as M

        # Classification
333
        model = M.mobilenet_v3_large(weights=None)
334
335
336
        print(store_model_weights(model, './class.pth'))

        # Quantized Classification
337
        model = M.quantization.mobilenet_v3_large(weights=None, quantize=False)
338
        model.fuse_model(is_qat=True)
339
340
        model.qconfig = torch.ao.quantization.get_default_qat_qconfig('qnnpack')
        _ = torch.ao.quantization.prepare_qat(model, inplace=True)
341
342
343
        print(store_model_weights(model, './qat.pth'))

        # Object Detection
344
        model = M.detection.fasterrcnn_mobilenet_v3_large_fpn(weights=None, weights_backbone=None)
345
346
347
        print(store_model_weights(model, './obj.pth'))

        # Segmentation
348
        model = M.segmentation.deeplabv3_mobilenet_v3_large(weights=None, weights_backbone=None, aux_loss=True)
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
        print(store_model_weights(model, './segm.pth', strict=False))

    Args:
        model (pytorch.nn.Module): The model on which the weights will be loaded for validation purposes.
        checkpoint_path (str): The path of the checkpoint we will load.
        checkpoint_key (str, optional): The key of the checkpoint where the model weights are stored.
            Default: "model".
        strict (bool): whether to strictly enforce that the keys
            in :attr:`state_dict` match the keys returned by this module's
            :meth:`~torch.nn.Module.state_dict` function. Default: ``True``

    Returns:
        output_path (str): The location where the weights are saved.
    """
    # Store the new model next to the checkpoint_path
    checkpoint_path = os.path.abspath(checkpoint_path)
    output_dir = os.path.dirname(checkpoint_path)

    # Deep copy to avoid side-effects on the model object.
    model = copy.deepcopy(model)
369
    checkpoint = torch.load(checkpoint_path, map_location="cpu")
370
371
372

    # Load the weights to the model to validate that everything works
    # and remove unnecessary weights (such as auxiliaries, etc)
373
374
375
    if checkpoint_key == "model_ema":
        del checkpoint[checkpoint_key]["n_averaged"]
        torch.nn.modules.utils.consume_prefix_in_state_dict_if_present(checkpoint[checkpoint_key], "module.")
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
    model.load_state_dict(checkpoint[checkpoint_key], strict=strict)

    tmp_path = os.path.join(output_dir, str(model.__hash__()))
    torch.save(model.state_dict(), tmp_path)

    sha256_hash = hashlib.sha256()
    with open(tmp_path, "rb") as f:
        # Read and update hash string value in blocks of 4K
        for byte_block in iter(lambda: f.read(4096), b""):
            sha256_hash.update(byte_block)
        hh = sha256_hash.hexdigest()

    output_path = os.path.join(output_dir, "weights-" + str(hh[:8]) + ".pth")
    os.replace(tmp_path, output_path)

    return output_path
392
393
394
395


def reduce_across_processes(val):
    if not is_dist_avail_and_initialized():
396
397
398
        # nothing to sync, but we still convert to tensor for consistency with the distributed case.
        return torch.tensor(val)

399
400
401
402
    t = torch.tensor(val, device="cuda")
    dist.barrier()
    dist.all_reduce(t)
    return t