utils.py 13.4 KB
Newer Older
1
import copy
2
import datetime
3
import errno
4
import hashlib
5
import os
6
import time
7
8
from collections import defaultdict, deque, OrderedDict

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import torch
import torch.distributed as dist


class SmoothedValue(object):
    """Track a series of values and provide access to smoothed values over a
    window or the global series average.
    """

    def __init__(self, window_size=20, fmt=None):
        if fmt is None:
            fmt = "{median:.4f} ({global_avg:.4f})"
        self.deque = deque(maxlen=window_size)
        self.total = 0.0
        self.count = 0
        self.fmt = fmt

    def update(self, value, n=1):
        self.deque.append(value)
        self.count += n
        self.total += value * n

    def synchronize_between_processes(self):
        """
        Warning: does not synchronize the deque!
        """
        if not is_dist_avail_and_initialized():
            return
37
        t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda")
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
        dist.barrier()
        dist.all_reduce(t)
        t = t.tolist()
        self.count = int(t[0])
        self.total = t[1]

    @property
    def median(self):
        d = torch.tensor(list(self.deque))
        return d.median().item()

    @property
    def avg(self):
        d = torch.tensor(list(self.deque), dtype=torch.float32)
        return d.mean().item()

    @property
    def global_avg(self):
        return self.total / self.count

    @property
    def max(self):
        return max(self.deque)

    @property
    def value(self):
        return self.deque[-1]

    def __str__(self):
        return self.fmt.format(
68
69
            median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value
        )
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88


class MetricLogger(object):
    def __init__(self, delimiter="\t"):
        self.meters = defaultdict(SmoothedValue)
        self.delimiter = delimiter

    def update(self, **kwargs):
        for k, v in kwargs.items():
            if isinstance(v, torch.Tensor):
                v = v.item()
            assert isinstance(v, (float, int))
            self.meters[k].update(v)

    def __getattr__(self, attr):
        if attr in self.meters:
            return self.meters[attr]
        if attr in self.__dict__:
            return self.__dict__[attr]
89
        raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, attr))
90
91
92
93

    def __str__(self):
        loss_str = []
        for name, meter in self.meters.items():
94
            loss_str.append("{}: {}".format(name, str(meter)))
95
96
97
98
99
100
101
102
103
104
105
106
        return self.delimiter.join(loss_str)

    def synchronize_between_processes(self):
        for meter in self.meters.values():
            meter.synchronize_between_processes()

    def add_meter(self, name, meter):
        self.meters[name] = meter

    def log_every(self, iterable, print_freq, header=None):
        i = 0
        if not header:
107
            header = ""
108
109
        start_time = time.time()
        end = time.time()
110
111
112
        iter_time = SmoothedValue(fmt="{avg:.4f}")
        data_time = SmoothedValue(fmt="{avg:.4f}")
        space_fmt = ":" + str(len(str(len(iterable)))) + "d"
113
        if torch.cuda.is_available():
114
115
116
117
118
119
120
121
122
123
124
            log_msg = self.delimiter.join(
                [
                    header,
                    "[{0" + space_fmt + "}/{1}]",
                    "eta: {eta}",
                    "{meters}",
                    "time: {time}",
                    "data: {data}",
                    "max mem: {memory:.0f}",
                ]
            )
125
        else:
126
127
128
            log_msg = self.delimiter.join(
                [header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}"]
            )
129
130
131
132
133
134
135
136
        MB = 1024.0 * 1024.0
        for obj in iterable:
            data_time.update(time.time() - end)
            yield obj
            iter_time.update(time.time() - end)
            if i % print_freq == 0:
                eta_seconds = iter_time.global_avg * (len(iterable) - i)
                eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
137
                if torch.cuda.is_available():
138
139
140
141
142
143
144
145
146
147
148
                    print(
                        log_msg.format(
                            i,
                            len(iterable),
                            eta=eta_string,
                            meters=str(self),
                            time=str(iter_time),
                            data=str(data_time),
                            memory=torch.cuda.max_memory_allocated() / MB,
                        )
                    )
149
                else:
150
151
152
153
154
                    print(
                        log_msg.format(
                            i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time)
                        )
                    )
155
156
157
158
            i += 1
            end = time.time()
        total_time = time.time() - start_time
        total_time_str = str(datetime.timedelta(seconds=int(total_time)))
159
        print("{} Total time: {}".format(header, total_time_str))
160
161


162
163
164
165
166
167
class ExponentialMovingAverage(torch.optim.swa_utils.AveragedModel):
    """Maintains moving averages of model parameters using an exponential decay.
    ``ema_avg = decay * avg_model_param + (1 - decay) * model_param``
    `torch.optim.swa_utils.AveragedModel <https://pytorch.org/docs/stable/optim.html#custom-averaging-strategies>`_
    is used to compute the EMA.
    """
168
169
170

    def __init__(self, model, decay, device="cpu"):
        ema_avg = lambda avg_model_param, model_param, num_averaged: decay * avg_model_param + (1 - decay) * model_param
171
172
        super().__init__(model, device, ema_avg)

173
174
175
176
177
178
179
    def update_parameters(self, model):
        for p_swa, p_model in zip(self.module.state_dict().values(), model.state_dict().values()):
            device = p_swa.device
            p_model_ = p_model.detach().to(device)
            if self.n_averaged == 0:
                p_swa.detach().copy_(p_model_)
            else:
180
                p_swa.detach().copy_(self.avg_fn(p_swa.detach(), p_model_, self.n_averaged.to(device)))
181
182
            self.n_averaged += 1

183

184
185
186
187
188
def accuracy(output, target, topk=(1,)):
    """Computes the accuracy over the k top predictions for the specified values of k"""
    with torch.no_grad():
        maxk = max(topk)
        batch_size = target.size(0)
189
190
        if target.ndim == 2:
            target = target.max(dim=1)[1]
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

        _, pred = output.topk(maxk, 1, True, True)
        pred = pred.t()
        correct = pred.eq(target[None])

        res = []
        for k in topk:
            correct_k = correct[:k].flatten().sum(dtype=torch.float32)
            res.append(correct_k * (100.0 / batch_size))
        return res


def mkdir(path):
    try:
        os.makedirs(path)
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise


def setup_for_distributed(is_master):
    """
    This function disables printing when not in master process
    """
    import builtins as __builtin__
216

217
218
219
    builtin_print = __builtin__.print

    def print(*args, **kwargs):
220
        force = kwargs.pop("force", False)
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
        if is_master or force:
            builtin_print(*args, **kwargs)

    __builtin__.print = print


def is_dist_avail_and_initialized():
    if not dist.is_available():
        return False
    if not dist.is_initialized():
        return False
    return True


def get_world_size():
    if not is_dist_avail_and_initialized():
        return 1
    return dist.get_world_size()


def get_rank():
    if not is_dist_avail_and_initialized():
        return 0
    return dist.get_rank()


def is_main_process():
    return get_rank() == 0


def save_on_master(*args, **kwargs):
    if is_main_process():
        torch.save(*args, **kwargs)
254
255
256


def init_distributed_mode(args):
257
    if "RANK" in os.environ and "WORLD_SIZE" in os.environ:
258
        args.rank = int(os.environ["RANK"])
259
260
261
262
        args.world_size = int(os.environ["WORLD_SIZE"])
        args.gpu = int(os.environ["LOCAL_RANK"])
    elif "SLURM_PROCID" in os.environ:
        args.rank = int(os.environ["SLURM_PROCID"])
263
264
265
        args.gpu = args.rank % torch.cuda.device_count()
    elif hasattr(args, "rank"):
        pass
266
    else:
267
        print("Not using distributed mode")
268
269
270
271
272
273
        args.distributed = False
        return

    args.distributed = True

    torch.cuda.set_device(args.gpu)
274
275
276
277
278
    args.dist_backend = "nccl"
    print("| distributed init (rank {}): {}".format(args.rank, args.dist_url), flush=True)
    torch.distributed.init_process_group(
        backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank
    )
279
    setup_for_distributed(args.rank == 0)
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300


def average_checkpoints(inputs):
    """Loads checkpoints from inputs and returns a model with averaged weights. Original implementation taken from:
    https://github.com/pytorch/fairseq/blob/a48f235636557b8d3bc4922a6fa90f3a0fa57955/scripts/average_checkpoints.py#L16

    Args:
      inputs (List[str]): An iterable of string paths of checkpoints to load from.
    Returns:
      A dict of string keys mapping to various values. The 'model' key
      from the returned dict should correspond to an OrderedDict mapping
      string parameter names to torch Tensors.
    """
    params_dict = OrderedDict()
    params_keys = None
    new_state = None
    num_models = len(inputs)
    for fpath in inputs:
        with open(fpath, "rb") as f:
            state = torch.load(
                f,
301
                map_location=(lambda s, _: torch.serialization.default_restore_location(s, "cpu")),
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
            )
        # Copies over the settings from the first checkpoint
        if new_state is None:
            new_state = state
        model_params = state["model"]
        model_params_keys = list(model_params.keys())
        if params_keys is None:
            params_keys = model_params_keys
        elif params_keys != model_params_keys:
            raise KeyError(
                "For checkpoint {}, expected list of params: {}, "
                "but found: {}".format(f, params_keys, model_params_keys)
            )
        for k in params_keys:
            p = model_params[k]
            if isinstance(p, torch.HalfTensor):
                p = p.float()
            if k not in params_dict:
                params_dict[k] = p.clone()
                # NOTE: clone() is needed in case of p is a shared parameter
            else:
                params_dict[k] += p
    averaged_params = OrderedDict()
    for k, v in params_dict.items():
        averaged_params[k] = v
        if averaged_params[k].is_floating_point():
            averaged_params[k].div_(num_models)
        else:
            averaged_params[k] //= num_models
    new_state["model"] = averaged_params
    return new_state


335
def store_model_weights(model, checkpoint_path, checkpoint_key="model", strict=True):
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
    """
    This method can be used to prepare weights files for new models. It receives as
    input a model architecture and a checkpoint from the training script and produces
    a file with the weights ready for release.

    Examples:
        from torchvision import models as M

        # Classification
        model = M.mobilenet_v3_large(pretrained=False)
        print(store_model_weights(model, './class.pth'))

        # Quantized Classification
        model = M.quantization.mobilenet_v3_large(pretrained=False, quantize=False)
        model.fuse_model()
        model.qconfig = torch.quantization.get_default_qat_qconfig('qnnpack')
        _ = torch.quantization.prepare_qat(model, inplace=True)
        print(store_model_weights(model, './qat.pth'))

        # Object Detection
        model = M.detection.fasterrcnn_mobilenet_v3_large_fpn(pretrained=False, pretrained_backbone=False)
        print(store_model_weights(model, './obj.pth'))

        # Segmentation
        model = M.segmentation.deeplabv3_mobilenet_v3_large(pretrained=False, pretrained_backbone=False, aux_loss=True)
        print(store_model_weights(model, './segm.pth', strict=False))

    Args:
        model (pytorch.nn.Module): The model on which the weights will be loaded for validation purposes.
        checkpoint_path (str): The path of the checkpoint we will load.
        checkpoint_key (str, optional): The key of the checkpoint where the model weights are stored.
            Default: "model".
        strict (bool): whether to strictly enforce that the keys
            in :attr:`state_dict` match the keys returned by this module's
            :meth:`~torch.nn.Module.state_dict` function. Default: ``True``

    Returns:
        output_path (str): The location where the weights are saved.
    """
    # Store the new model next to the checkpoint_path
    checkpoint_path = os.path.abspath(checkpoint_path)
    output_dir = os.path.dirname(checkpoint_path)

    # Deep copy to avoid side-effects on the model object.
    model = copy.deepcopy(model)
381
    checkpoint = torch.load(checkpoint_path, map_location="cpu")
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

    # Load the weights to the model to validate that everything works
    # and remove unnecessary weights (such as auxiliaries, etc)
    model.load_state_dict(checkpoint[checkpoint_key], strict=strict)

    tmp_path = os.path.join(output_dir, str(model.__hash__()))
    torch.save(model.state_dict(), tmp_path)

    sha256_hash = hashlib.sha256()
    with open(tmp_path, "rb") as f:
        # Read and update hash string value in blocks of 4K
        for byte_block in iter(lambda: f.read(4096), b""):
            sha256_hash.update(byte_block)
        hh = sha256_hash.hexdigest()

    output_path = os.path.join(output_dir, "weights-" + str(hh[:8]) + ".pth")
    os.replace(tmp_path, output_path)

    return output_path