models_new.rst 15.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
.. _models_new:

Models and pre-trained weights - New
####################################

The ``torchvision.models`` subpackage contains definitions of models for addressing
different tasks, including: image classification, pixelwise semantic
segmentation, object detection, instance segmentation, person
keypoint detection, video classification, and optical flow.

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
General information on pre-trained weights
==========================================

TorchVision offers pre-trained weights for every provided architecture, using
the PyTorch :mod:`torch.hub`. Instancing a pre-trained model will download its
weights to a cache directory. This directory can be set using the `TORCH_HOME`
environment variable. See :func:`torch.hub.load_state_dict_from_url` for details.

.. note::

    The pre-trained models provided in this library may have their own licenses or
    terms and conditions derived from the dataset used for training. It is your
    responsibility to determine whether you have permission to use the models for
    your use case.

26
.. note ::
27
28
29
30
31
32
33
34
35
36
37
    Backward compatibility is guaranteed for loading a serialized
    ``state_dict`` to the model created using old PyTorch version.
    On the contrary, loading entire saved models or serialized
    ``ScriptModules`` (serialized using older versions of PyTorch)
    may not preserve the historic behaviour. Refer to the following
    `documentation
    <https://pytorch.org/docs/stable/notes/serialization.html#id6>`_


Initializing pre-trained models
-------------------------------
38

39
As of v0.13, TorchVision offers a new `Multi-weight support API
40
41
<https://pytorch.org/blog/introducing-torchvision-new-multi-weight-support-api/>`_
for loading different weights to the existing model builder methods:
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

.. code:: python

    from torchvision.models import resnet50, ResNet50_Weights

    # Old weights with accuracy 76.130%
    resnet50(weights=ResNet50_Weights.IMAGENET1K_V1)

    # New weights with accuracy 80.858%
    resnet50(weights=ResNet50_Weights.IMAGENET1K_V2)

    # Best available weights (currently alias for IMAGENET1K_V2)
    # Note that these weights may change across versions
    resnet50(weights=ResNet50_Weights.DEFAULT)

    # Strings are also supported
    resnet50(weights="IMAGENET1K_V2")

    # No weights - random initialization
61
    resnet50(weights=None)
62
63
64
65
66
67
68
69
70
71


Migrating to the new API is very straightforward. The following method calls between the 2 APIs are all equivalent:

.. code:: python

    from torchvision.models import resnet50, ResNet50_Weights

    # Using pretrained weights:
    resnet50(weights=ResNet50_Weights.IMAGENET1K_V1)
72
    resnet50(weights="IMAGENET1K_V1")
73
74
75
76
77
    resnet50(pretrained=True)  # deprecated
    resnet50(True)  # deprecated

    # Using no weights:
    resnet50(weights=None)
78
    resnet50()
79
80
81
82
83
    resnet50(pretrained=False)  # deprecated
    resnet50(False)  # deprecated

Note that the ``pretrained`` parameter is now deprecated, using it will emit warnings and will be removed on v0.15.

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
Using the pre-trained models
----------------------------

Before using the pre-trained models, one must preprocess the image
(resize with right resolution/interpolation, apply inference transforms,
rescale the values etc). There is no standard way to do this as it depends on
how a given model was trained. It can vary across model families, variants or
even weight versions. Using the correct preprocessing method is critical and
failing to do so may lead to decreased accuracy or incorrect outputs.

All the necessary information for the inference transforms of each pre-trained
model is provided on its weights documentation. To simplify inference, TorchVision
bundles the necessary preprocessing transforms into each model weight. These are
accessible via the ``weight.transforms`` attribute:

.. code:: python

    # Initialize the Weight Transforms
    weights = ResNet50_Weights.DEFAULT
    preprocess = weights.transforms()

    # Apply it to the input image
    img_transformed = preprocess(img)


Some models use modules which have different training and evaluation
behavior, such as batch normalization. To switch between these modes, use
``model.train()`` or ``model.eval()`` as appropriate. See
:meth:`~torch.nn.Module.train` or :meth:`~torch.nn.Module.eval` for details.

.. code:: python

    # Initialize model
    weights = ResNet50_Weights.DEFAULT
    model = resnet50(weights=weights)

    # Set model to eval mode
    model.eval()

123
124
125
126
127
128
129
130
131
132
133
134

Classification
==============

.. currentmodule:: torchvision.models

The following classification models are available, with or without pre-trained
weights:

.. toctree::
   :maxdepth: 1

135
   models/alexnet
Hu Ye's avatar
Hu Ye committed
136
   models/convnext
137
   models/densenet
138
   models/efficientnet
139
   models/efficientnetv2
140
   models/googlenet
Aditya Oke's avatar
Aditya Oke committed
141
   models/inception
Joao Gomes's avatar
Joao Gomes committed
142
   models/mnasnet
143
   models/mobilenetv2
144
   models/mobilenetv3
145
   models/regnet
146
   models/resnet
147
   models/resnext
148
   models/shufflenetv2
Nicolas Hug's avatar
Nicolas Hug committed
149
   models/squeezenet
150
   models/swin_transformer
151
   models/vgg
152
   models/vision_transformer
153
   models/wide_resnet
154

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
|

Here is an example of how to use the pre-trained image classification models:

.. code:: python

    from torchvision.io import read_image
    from torchvision.models import resnet50, ResNet50_Weights

    img = read_image("test/assets/encode_jpeg/grace_hopper_517x606.jpg")

    # Step 1: Initialize model with the best available weights
    weights = ResNet50_Weights.DEFAULT
    model = resnet50(weights=weights)
    model.eval()

    # Step 2: Initialize the inference transforms
    preprocess = weights.transforms()

    # Step 3: Apply inference preprocessing transforms
    batch = preprocess(img).unsqueeze(0)

    # Step 4: Use the model and print the predicted category
    prediction = model(batch).squeeze(0).softmax(0)
    class_id = prediction.argmax().item()
    score = prediction[class_id].item()
    category_name = weights.meta["categories"][class_id]
    print(f"{category_name}: {100 * score:.1f}%")
183

184
185
The classes of the pre-trained model outputs can be found at ``weights.meta["categories"]``.

186
187
188
Table of all available classification weights
---------------------------------------------

189
Accuracies are reported on ImageNet-1K using single crops:
190
191
192

.. include:: generated/classification_table.rst

193
194
195
196
197
Quantized models
----------------

.. currentmodule:: torchvision.models.quantization

198
The following architectures provide support for INT8 quantized models, with or without
199
200
201
202
203
204
pre-trained weights:

.. toctree::
   :maxdepth: 1

   models/googlenet_quant
205
   models/inception_quant
206
   models/mobilenetv2_quant
207
   models/mobilenetv3_quant
208
   models/resnet_quant
209
   models/resnext_quant
210
   models/shufflenetv2_quant
211

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
|

Here is an example of how to use the pre-trained quantized image classification models:

.. code:: python

    from torchvision.io import read_image
    from torchvision.models.quantization import resnet50, ResNet50_QuantizedWeights

    img = read_image("test/assets/encode_jpeg/grace_hopper_517x606.jpg")

    # Step 1: Initialize model with the best available weights
    weights = ResNet50_QuantizedWeights.DEFAULT
    model = resnet50(weights=weights, quantize=True)
    model.eval()

    # Step 2: Initialize the inference transforms
    preprocess = weights.transforms()

    # Step 3: Apply inference preprocessing transforms
    batch = preprocess(img).unsqueeze(0)

    # Step 4: Use the model and print the predicted category
    prediction = model(batch).squeeze(0).softmax(0)
    class_id = prediction.argmax().item()
    score = prediction[class_id].item()
    category_name = weights.meta["categories"][class_id]
    print(f"{category_name}: {100 * score}%")

241
242
The classes of the pre-trained model outputs can be found at ``weights.meta["categories"]``.

243
244
245
246

Table of all available quantized classification weights
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

247
Accuracies are reported on ImageNet-1K using single crops:
248
249
250

.. include:: generated/classification_quant_table.rst

251
252
253
254
255
256
257
258
259
260
261
262
Semantic Segmentation
=====================

.. currentmodule:: torchvision.models.segmentation

The following semantic segmentation models are available, with or without
pre-trained weights:

.. toctree::
   :maxdepth: 1

   models/deeplabv3
263
   models/fcn
Aditya Oke's avatar
Aditya Oke committed
264
   models/lraspp
265

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
|

Here is an example of how to use the pre-trained semantic segmentation models:

.. code:: python

    from torchvision.io.image import read_image
    from torchvision.models.segmentation import fcn_resnet50, FCN_ResNet50_Weights
    from torchvision.transforms.functional import to_pil_image

    img = read_image("gallery/assets/dog1.jpg")

    # Step 1: Initialize model with the best available weights
    weights = FCN_ResNet50_Weights.DEFAULT
    model = fcn_resnet50(weights=weights)
    model.eval()

    # Step 2: Initialize the inference transforms
    preprocess = weights.transforms()

    # Step 3: Apply inference preprocessing transforms
    batch = preprocess(img).unsqueeze(0)

    # Step 4: Use the model and visualize the prediction
    prediction = model(batch)["out"]
    normalized_masks = prediction.softmax(dim=1)
    class_to_idx = {cls: idx for (idx, cls) in enumerate(weights.meta["categories"])}
    mask = normalized_masks[0, class_to_idx["dog"]]
    to_pil_image(mask).show()

296
297
298
The classes of the pre-trained model outputs can be found at ``weights.meta["categories"]``.
The output format of the models is illustrated in :ref:`semantic_seg_output`.

299

300
301
302
Table of all available semantic segmentation weights
----------------------------------------------------

303
All models are evaluated a subset of COCO val2017, on the 20 categories that are present in the Pascal VOC dataset:
304
305
306
307

.. include:: generated/segmentation_table.rst


308

309
310
311
Object Detection, Instance Segmentation and Person Keypoint Detection
=====================================================================

312
313
314
315
316
The pre-trained models for detection, instance segmentation and
keypoint detection are initialized with the classification models
in torchvision. The models expect a list of ``Tensor[C, H, W]``.
Check the constructor of the models for more information.

317
Object Detection
318
----------------
319

320
321
.. currentmodule:: torchvision.models.detection

322
The following object detection models are available, with or without pre-trained
323
324
325
326
327
weights:

.. toctree::
   :maxdepth: 1

328
   models/faster_rcnn
Hu Ye's avatar
Hu Ye committed
329
330
   models/fcos
   models/retinanet
331
   models/ssd
332
   models/ssdlite
333

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
|

Here is an example of how to use the pre-trained object detection models:

.. code:: python


    from torchvision.io.image import read_image
    from torchvision.models.detection import fasterrcnn_resnet50_fpn_v2, FasterRCNN_ResNet50_FPN_V2_Weights
    from torchvision.utils import draw_bounding_boxes
    from torchvision.transforms.functional import to_pil_image

    img = read_image("test/assets/encode_jpeg/grace_hopper_517x606.jpg")

    # Step 1: Initialize model with the best available weights
    weights = FasterRCNN_ResNet50_FPN_V2_Weights.DEFAULT
    model = fasterrcnn_resnet50_fpn_v2(weights=weights, box_score_thresh=0.9)
    model.eval()

    # Step 2: Initialize the inference transforms
    preprocess = weights.transforms()

    # Step 3: Apply inference preprocessing transforms
    batch = [preprocess(img)]

    # Step 4: Use the model and visualize the prediction
    prediction = model(batch)[0]
    labels = [weights.meta["categories"][i] for i in prediction["labels"]]
    box = draw_bounding_boxes(img, boxes=prediction["boxes"],
                              labels=labels,
                              colors="red",
                              width=4, font_size=30)
    im = to_pil_image(box.detach())
    im.show()

369
370
371
The classes of the pre-trained model outputs can be found at ``weights.meta["categories"]``.
For details on how to plot the bounding boxes of the models, you may refer to :ref:`instance_seg_output`.

372
373
Table of all available Object detection weights
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
374

375
Box MAPs are reported on COCO val2017:
376
377

.. include:: generated/detection_table.rst
378

379
380
381
382
383
384
385
386
387
388
389
390
391
Instance Segmentation
---------------------

.. currentmodule:: torchvision.models.detection

The following instance segmentation models are available, with or without pre-trained
weights:

.. toctree::
   :maxdepth: 1

   models/mask_rcnn

392
393
394
395
396
|


For details on how to plot the masks of the models, you may refer to :ref:`instance_seg_output`.

397
398
399
Table of all available Instance segmentation weights
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

400
Box and Mask MAPs are reported on COCO val2017:
401
402

.. include:: generated/instance_segmentation_table.rst
403

404
405
Keypoint Detection
------------------
406
407
408

.. currentmodule:: torchvision.models.detection

409
The following person keypoint detection models are available, with or without
410
411
412
413
414
415
416
pre-trained weights:

.. toctree::
   :maxdepth: 1

   models/keypoint_rcnn

417
418
419
420
421
|

The classes of the pre-trained model outputs can be found at ``weights.meta["keypoint_names"]``.
For details on how to plot the bounding boxes of the models, you may refer to :ref:`keypoint_output`.

422
Table of all available Keypoint detection weights
423
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
424

425
Box and Keypoint MAPs are reported on COCO val2017:
426
427
428
429

.. include:: generated/detection_keypoint_table.rst


430
431
432
433
434
435
436
437
438
439
440
441
442
Video Classification
====================

.. currentmodule:: torchvision.models.video

The following video classification models are available, with or without
pre-trained weights:

.. toctree::
   :maxdepth: 1

   models/video_resnet

443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
|

Here is an example of how to use the pre-trained video classification models:

.. code:: python


    from torchvision.io.video import read_video
    from torchvision.models.video import r3d_18, R3D_18_Weights

    vid, _, _ = read_video("test/assets/videos/v_SoccerJuggling_g23_c01.avi")
    vid = vid[:32]  # optionally shorten duration

    # Step 1: Initialize model with the best available weights
    weights = R3D_18_Weights.DEFAULT
    model = r3d_18(weights=weights)
    model.eval()

    # Step 2: Initialize the inference transforms
    preprocess = weights.transforms()

    # Step 3: Apply inference preprocessing transforms
    batch = preprocess(vid).unsqueeze(0)

    # Step 4: Use the model and print the predicted category
    prediction = model(batch).squeeze(0).softmax(0)
    label = prediction.argmax().item()
    score = prediction[label].item()
    category_name = weights.meta["categories"][label]
    print(f"{category_name}: {100 * score}%")

474
475
The classes of the pre-trained model outputs can be found at ``weights.meta["categories"]``.

476

477
478
479
Table of all available video classification weights
---------------------------------------------------

480
Accuracies are reported on Kinetics-400 using single crops for clip length 16:
481
482

.. include:: generated/video_table.rst
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502

Using models from Hub
=====================

Most pre-trained models can be accessed directly via PyTorch Hub without having TorchVision installed:

.. code:: python

    import torch

    # Option 1: passing weights param as string
    model = torch.hub.load("pytorch/vision", "resnet50", weights="IMAGENET1K_V2")

    # Option 2: passing weights param as enum
    weights = torch.hub.load("pytorch/vision", "get_weight", weights="ResNet50_Weights.IMAGENET1K_V2")
    model = torch.hub.load("pytorch/vision", "resnet50", weights=weights)

The only exception to the above are the detection models included on
:mod:`torchvision.models.detection`. These models require TorchVision
to be installed because they depend on custom C++ operators.