"llm/vscode:/vscode.git/clone" did not exist on "78a48de8049ec96df68dfdef740f1beb2bec7595"
roi_pool.cpp 5.56 KB
Newer Older
1
2
#include "roi_pool.h"
#include <torch/extension.h>
3

4
5
#if defined(WITH_CUDA) || defined(WITH_HIP)
#include <ATen/autocast_mode.h>
6
#endif
7

8
9
namespace vision {
namespace ops {
10
11

std::tuple<at::Tensor, at::Tensor> roi_pool(
12
13
    const at::Tensor& input,
    const at::Tensor& rois,
14
15
16
17
18
19
20
21
22
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width) {
  static auto op = c10::Dispatcher::singleton()
                       .findSchemaOrThrow("torchvision::roi_pool", "")
                       .typed<decltype(roi_pool)>();
  return op.call(input, rois, spatial_scale, pooled_height, pooled_width);
}

23
#if defined(WITH_CUDA) || defined(WITH_HIP)
24
std::tuple<at::Tensor, at::Tensor> roi_pool_autocast(
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
    const at::Tensor& input,
    const at::Tensor& rois,
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width) {
  c10::impl::ExcludeDispatchKeyGuard no_autocast(c10::DispatchKey::Autocast);
  auto result = roi_pool(
      at::autocast::cached_cast(at::kFloat, input),
      at::autocast::cached_cast(at::kFloat, rois),
      spatial_scale,
      pooled_height,
      pooled_width);

  return std::make_tuple(
      std::get<0>(result).to(input.scalar_type()),
      std::get<1>(result).to(input.scalar_type()));
41
}
42
#endif
43

44
at::Tensor _roi_pool_backward(
45
46
47
    const at::Tensor& grad,
    const at::Tensor& rois,
    const at::Tensor& argmax,
48
49
50
51
52
53
54
55
56
57
58
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width,
    int64_t batch_size,
    int64_t channels,
    int64_t height,
    int64_t width) {
  static auto op = c10::Dispatcher::singleton()
                       .findSchemaOrThrow("torchvision::_roi_pool_backward", "")
                       .typed<decltype(_roi_pool_backward)>();
  return op.call(
59
60
61
62
63
64
65
66
67
68
      grad,
      rois,
      argmax,
      spatial_scale,
      pooled_height,
      pooled_width,
      batch_size,
      channels,
      height,
      width);
69
70
}

71
72
namespace {

73
74
class ROIPoolFunction : public torch::autograd::Function<ROIPoolFunction> {
 public:
75
76
  static torch::autograd::variable_list forward(
      torch::autograd::AutogradContext* ctx,
77
78
79
80
81
      const torch::autograd::Variable& input,
      const torch::autograd::Variable& rois,
      double spatial_scale,
      int64_t pooled_height,
      int64_t pooled_width) {
82
83
84
85
    ctx->saved_data["spatial_scale"] = spatial_scale;
    ctx->saved_data["pooled_height"] = pooled_height;
    ctx->saved_data["pooled_width"] = pooled_width;
    ctx->saved_data["input_shape"] = input.sizes();
86
87
88
89
    at::AutoNonVariableTypeMode g;
    auto result =
        roi_pool(input, rois, spatial_scale, pooled_height, pooled_width);

90
91
92
93
    auto output = std::get<0>(result);
    auto argmax = std::get<1>(result);
    ctx->save_for_backward({rois, argmax});
    ctx->mark_non_differentiable({argmax});
94

95
96
97
    return {output, argmax};
  }

98
99
  static torch::autograd::variable_list backward(
      torch::autograd::AutogradContext* ctx,
100
      const torch::autograd::variable_list& grad_output) {
101
102
103
104
105
    // Use data saved in forward
    auto saved = ctx->get_saved_variables();
    auto rois = saved[0];
    auto argmax = saved[1];
    auto input_shape = ctx->saved_data["input_shape"].toIntList();
106
    auto grad_in = _roi_pool_backward(
107
108
109
110
111
112
113
114
115
116
        grad_output[0],
        rois,
        argmax,
        ctx->saved_data["spatial_scale"].toDouble(),
        ctx->saved_data["pooled_height"].toInt(),
        ctx->saved_data["pooled_width"].toInt(),
        input_shape[0],
        input_shape[1],
        input_shape[2],
        input_shape[3]);
117

118
119
120
121
122
    return {grad_in,
            torch::autograd::Variable(),
            torch::autograd::Variable(),
            torch::autograd::Variable(),
            torch::autograd::Variable()};
123
124
125
  }
};

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
// TODO: There should be an easier way to do this
class ROIPoolBackwardFunction
    : public torch::autograd::Function<ROIPoolBackwardFunction> {
 public:
  static torch::autograd::variable_list forward(
      torch::autograd::AutogradContext* ctx,
      const torch::autograd::Variable& grad,
      const torch::autograd::Variable& rois,
      const torch::autograd::Variable& argmax,
      double spatial_scale,
      int64_t pooled_height,
      int64_t pooled_width,
      int64_t batch_size,
      int64_t channels,
      int64_t height,
      int64_t width) {
    at::AutoNonVariableTypeMode g;
    auto grad_in = _roi_pool_backward(
        grad,
        rois,
        argmax,
        spatial_scale,
        pooled_height,
        pooled_width,
        batch_size,
        channels,
        height,
        width);

    return {grad_in};
  }

  static torch::autograd::variable_list backward(
      torch::autograd::AutogradContext* ctx,
      const torch::autograd::variable_list& grad_output) {
    TORCH_CHECK(0, "double backwards on roi_pool not supported");
  }
};

165
166
167
} // namespace

std::tuple<at::Tensor, at::Tensor> roi_pool_autograd(
168
169
    const at::Tensor& input,
    const at::Tensor& rois,
170
171
172
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width) {
173
174
  auto result = ROIPoolFunction::apply(
      input, rois, spatial_scale, pooled_height, pooled_width);
175
176
177
178

  return std::make_tuple(result[0], result[1]);
}

179
at::Tensor roi_pool_backward_autograd(
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    const at::Tensor& grad,
    const at::Tensor& rois,
    const at::Tensor& argmax,
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width,
    int64_t batch_size,
    int64_t channels,
    int64_t height,
    int64_t width) {
  return ROIPoolBackwardFunction::apply(
      grad,
      rois,
      argmax,
      spatial_scale,
      pooled_height,
      pooled_width,
      batch_size,
      channels,
      height,
      width)[0];
201
}
202
203
204

} // namespace ops
} // namespace vision