#include "roi_pool.h" #include #if defined(WITH_CUDA) || defined(WITH_HIP) #include #endif namespace vision { namespace ops { std::tuple roi_pool( const at::Tensor& input, const at::Tensor& rois, double spatial_scale, int64_t pooled_height, int64_t pooled_width) { static auto op = c10::Dispatcher::singleton() .findSchemaOrThrow("torchvision::roi_pool", "") .typed(); return op.call(input, rois, spatial_scale, pooled_height, pooled_width); } #if defined(WITH_CUDA) || defined(WITH_HIP) std::tuple roi_pool_autocast( const at::Tensor& input, const at::Tensor& rois, double spatial_scale, int64_t pooled_height, int64_t pooled_width) { c10::impl::ExcludeDispatchKeyGuard no_autocast(c10::DispatchKey::Autocast); auto result = roi_pool( at::autocast::cached_cast(at::kFloat, input), at::autocast::cached_cast(at::kFloat, rois), spatial_scale, pooled_height, pooled_width); return std::make_tuple( std::get<0>(result).to(input.scalar_type()), std::get<1>(result).to(input.scalar_type())); } #endif at::Tensor _roi_pool_backward( const at::Tensor& grad, const at::Tensor& rois, const at::Tensor& argmax, double spatial_scale, int64_t pooled_height, int64_t pooled_width, int64_t batch_size, int64_t channels, int64_t height, int64_t width) { static auto op = c10::Dispatcher::singleton() .findSchemaOrThrow("torchvision::_roi_pool_backward", "") .typed(); return op.call( grad, rois, argmax, spatial_scale, pooled_height, pooled_width, batch_size, channels, height, width); } namespace { class ROIPoolFunction : public torch::autograd::Function { public: static torch::autograd::variable_list forward( torch::autograd::AutogradContext* ctx, const torch::autograd::Variable& input, const torch::autograd::Variable& rois, double spatial_scale, int64_t pooled_height, int64_t pooled_width) { ctx->saved_data["spatial_scale"] = spatial_scale; ctx->saved_data["pooled_height"] = pooled_height; ctx->saved_data["pooled_width"] = pooled_width; ctx->saved_data["input_shape"] = input.sizes(); at::AutoNonVariableTypeMode g; auto result = roi_pool(input, rois, spatial_scale, pooled_height, pooled_width); auto output = std::get<0>(result); auto argmax = std::get<1>(result); ctx->save_for_backward({rois, argmax}); ctx->mark_non_differentiable({argmax}); return {output, argmax}; } static torch::autograd::variable_list backward( torch::autograd::AutogradContext* ctx, const torch::autograd::variable_list& grad_output) { // Use data saved in forward auto saved = ctx->get_saved_variables(); auto rois = saved[0]; auto argmax = saved[1]; auto input_shape = ctx->saved_data["input_shape"].toIntList(); auto grad_in = _roi_pool_backward( grad_output[0], rois, argmax, ctx->saved_data["spatial_scale"].toDouble(), ctx->saved_data["pooled_height"].toInt(), ctx->saved_data["pooled_width"].toInt(), input_shape[0], input_shape[1], input_shape[2], input_shape[3]); return {grad_in, torch::autograd::Variable(), torch::autograd::Variable(), torch::autograd::Variable(), torch::autograd::Variable()}; } }; // TODO: There should be an easier way to do this class ROIPoolBackwardFunction : public torch::autograd::Function { public: static torch::autograd::variable_list forward( torch::autograd::AutogradContext* ctx, const torch::autograd::Variable& grad, const torch::autograd::Variable& rois, const torch::autograd::Variable& argmax, double spatial_scale, int64_t pooled_height, int64_t pooled_width, int64_t batch_size, int64_t channels, int64_t height, int64_t width) { at::AutoNonVariableTypeMode g; auto grad_in = _roi_pool_backward( grad, rois, argmax, spatial_scale, pooled_height, pooled_width, batch_size, channels, height, width); return {grad_in}; } static torch::autograd::variable_list backward( torch::autograd::AutogradContext* ctx, const torch::autograd::variable_list& grad_output) { TORCH_CHECK(0, "double backwards on roi_pool not supported"); } }; } // namespace std::tuple roi_pool_autograd( const at::Tensor& input, const at::Tensor& rois, double spatial_scale, int64_t pooled_height, int64_t pooled_width) { auto result = ROIPoolFunction::apply( input, rois, spatial_scale, pooled_height, pooled_width); return std::make_tuple(result[0], result[1]); } at::Tensor roi_pool_backward_autograd( const at::Tensor& grad, const at::Tensor& rois, const at::Tensor& argmax, double spatial_scale, int64_t pooled_height, int64_t pooled_width, int64_t batch_size, int64_t channels, int64_t height, int64_t width) { return ROIPoolBackwardFunction::apply( grad, rois, argmax, spatial_scale, pooled_height, pooled_width, batch_size, channels, height, width)[0]; } } // namespace ops } // namespace vision