README.rst 10.2 KB
Newer Older
Soumith Chintala's avatar
Soumith Chintala committed
1
torchvision
Xiuyan Ni's avatar
Xiuyan Ni committed
2
===========
Thomas Grainger's avatar
Thomas Grainger committed
3

4
5
6
7
.. image:: https://pepy.tech/badge/torchvision
    :target: https://pepy.tech/project/torchvision

.. image:: https://img.shields.io/badge/dynamic/json.svg?label=docs&url=https%3A%2F%2Fpypi.org%2Fpypi%2Ftorchvision%2Fjson&query=%24.info.version&colorB=brightgreen&prefix=v
8
    :target: https://pytorch.org/vision/stable/index.html
9

10

11
The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision.
Thomas Grainger's avatar
Thomas Grainger committed
12

Francisco Massa's avatar
Francisco Massa committed
13

Thomas Grainger's avatar
Thomas Grainger committed
14
15
16
Installation
============

17
18
19
20
21
22
23
We recommend Anaconda as Python package management system. Please refer to `pytorch.org <https://pytorch.org/>`_
for the detail of PyTorch (``torch``) installation. The following is the corresponding ``torchvision`` versions and
supported Python versions.

+--------------------------+--------------------------+---------------------------------+
| ``torch``                | ``torchvision``          | ``python``                      |
+==========================+==========================+=================================+
Joao Gomes's avatar
Joao Gomes committed
24
25
| ``main`` / ``nightly``   | ``main`` / ``nightly``   | ``>=3.7``, ``<=3.10``           |
+--------------------------+--------------------------+---------------------------------+
26
27
| ``1.12.0``               | ``0.13.0``               | ``>=3.7``, ``<=3.10``           |
+--------------------------+--------------------------+---------------------------------+
Joao Gomes's avatar
Joao Gomes committed
28
| ``1.11.0``               | ``0.12.0``               | ``>=3.7``, ``<=3.10``           |
29
+--------------------------+--------------------------+---------------------------------+
Vasilis Vryniotis's avatar
Vasilis Vryniotis committed
30
31
| ``1.10.2``               | ``0.11.3``               | ``>=3.6``, ``<=3.9``            |
+--------------------------+--------------------------+---------------------------------+
32
| ``1.10.1``               | ``0.11.2``               | ``>=3.6``, ``<=3.9``            |
33
+--------------------------+--------------------------+---------------------------------+
34
35
| ``1.10.0``               | ``0.11.1``               | ``>=3.6``, ``<=3.9``            |
+--------------------------+--------------------------+---------------------------------+
36
37
| ``1.9.1``                | ``0.10.1``               | ``>=3.6``, ``<=3.9``            |
+--------------------------+--------------------------+---------------------------------+
Philip Meier's avatar
Philip Meier committed
38
| ``1.9.0``                | ``0.10.0``               | ``>=3.6``, ``<=3.9``            |
39
+--------------------------+--------------------------+---------------------------------+
40
41
| ``1.8.2``                | ``0.9.2``                | ``>=3.6``, ``<=3.9``            |
+--------------------------+--------------------------+---------------------------------+
Philip Meier's avatar
Philip Meier committed
42
| ``1.8.1``                | ``0.9.1``                | ``>=3.6``, ``<=3.9``            |
43
+--------------------------+--------------------------+---------------------------------+
Philip Meier's avatar
Philip Meier committed
44
| ``1.8.0``                | ``0.9.0``                | ``>=3.6``, ``<=3.9``            |
45
+--------------------------+--------------------------+---------------------------------+
Philip Meier's avatar
Philip Meier committed
46
| ``1.7.1``                | ``0.8.2``                | ``>=3.6``, ``<=3.9``            |
47
+--------------------------+--------------------------+---------------------------------+
Philip Meier's avatar
Philip Meier committed
48
| ``1.7.0``                | ``0.8.1``                | ``>=3.6``, ``<=3.8``            |
49
+--------------------------+--------------------------+---------------------------------+
Philip Meier's avatar
Philip Meier committed
50
| ``1.7.0``                | ``0.8.0``                | ``>=3.6``, ``<=3.8``            |
51
+--------------------------+--------------------------+---------------------------------+
Philip Meier's avatar
Philip Meier committed
52
| ``1.6.0``                | ``0.7.0``                | ``>=3.6``, ``<=3.8``            |
53
+--------------------------+--------------------------+---------------------------------+
Philip Meier's avatar
Philip Meier committed
54
| ``1.5.1``                | ``0.6.1``                | ``>=3.5``, ``<=3.8``            |
55
+--------------------------+--------------------------+---------------------------------+
Philip Meier's avatar
Philip Meier committed
56
| ``1.5.0``                | ``0.6.0``                | ``>=3.5``, ``<=3.8``            |
57
58
59
60
61
62
63
64
65
66
67
68
69
+--------------------------+--------------------------+---------------------------------+
| ``1.4.0``                | ``0.5.0``                | ``==2.7``, ``>=3.5``, ``<=3.8`` |
+--------------------------+--------------------------+---------------------------------+
| ``1.3.1``                | ``0.4.2``                | ``==2.7``, ``>=3.5``, ``<=3.7`` |
+--------------------------+--------------------------+---------------------------------+
| ``1.3.0``                | ``0.4.1``                | ``==2.7``, ``>=3.5``, ``<=3.7`` |
+--------------------------+--------------------------+---------------------------------+
| ``1.2.0``                | ``0.4.0``                | ``==2.7``, ``>=3.5``, ``<=3.7`` |
+--------------------------+--------------------------+---------------------------------+
| ``1.1.0``                | ``0.3.0``                | ``==2.7``, ``>=3.5``, ``<=3.7`` |
+--------------------------+--------------------------+---------------------------------+
| ``<=1.0.1``              | ``0.2.2``                | ``==2.7``, ``>=3.5``, ``<=3.7`` |
+--------------------------+--------------------------+---------------------------------+
70

Soumith Chintala's avatar
Soumith Chintala committed
71
Anaconda:
Thomas Grainger's avatar
Thomas Grainger committed
72
73
74

.. code:: bash

Soumith Chintala's avatar
Soumith Chintala committed
75
    conda install torchvision -c pytorch
Thomas Grainger's avatar
Thomas Grainger committed
76

Soumith Chintala's avatar
Soumith Chintala committed
77
pip:
Thomas Grainger's avatar
Thomas Grainger committed
78
79
80

.. code:: bash

Thomas Grainger's avatar
Thomas Grainger committed
81
    pip install torchvision
Thomas Grainger's avatar
Thomas Grainger committed
82

Soumith Chintala's avatar
Soumith Chintala committed
83
84
85
86
87
From source:

.. code:: bash

    python setup.py install
88
89
    # or, for OSX
    # MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ python setup.py install
Soumith Chintala's avatar
Soumith Chintala committed
90

Vince's avatar
Vince committed
91

92
In case building TorchVision from source fails, install the nightly version of PyTorch following
93
the linked guide on the  `contributing page <https://github.com/pytorch/vision/blob/main/CONTRIBUTING.md#development-installation>`_ and retry the install.
Vince's avatar
Vince committed
94

95
96
97
By default, GPU support is built if CUDA is found and ``torch.cuda.is_available()`` is true.
It's possible to force building GPU support by setting ``FORCE_CUDA=1`` environment variable,
which is useful when building a docker image.
98
99
100
101
102
103
104
105
106
107
108

Image Backend
=============
Torchvision currently supports the following image backends:

* `Pillow`_ (default)

* `Pillow-SIMD`_ - a **much faster** drop-in replacement for Pillow with SIMD. If installed will be used as the default.

* `accimage`_ - if installed can be activated by calling :code:`torchvision.set_image_backend('accimage')`

109
110
* `libpng`_ - can be installed via conda :code:`conda install libpng` or any of the package managers for debian-based and RHEL-based Linux distributions.

111
112
113
* `libjpeg`_ - can be installed via conda :code:`conda install jpeg` or any of the package managers for debian-based and RHEL-based Linux distributions. `libjpeg-turbo`_ can be used as well.

**Notes:** ``libpng`` and ``libjpeg`` must be available at compilation time in order to be available. Make sure that it is available on the standard library locations,
114
115
116
otherwise, add the include and library paths in the environment variables ``TORCHVISION_INCLUDE`` and ``TORCHVISION_LIBRARY``, respectively.

.. _libpng : http://www.libpng.org/pub/png/libpng.html
117
118
119
.. _Pillow : https://python-pillow.org/
.. _Pillow-SIMD : https://github.com/uploadcare/pillow-simd
.. _accimage: https://github.com/pytorch/accimage
120
121
.. _libjpeg: http://ijg.org/
.. _libjpeg-turbo: https://libjpeg-turbo.org/
122

123
124
125
126
Video Backend
=============
Torchvision currently supports the following video backends:

127
128
129
* `pyav`_ (default) - Pythonic binding for ffmpeg libraries.

.. _pyav : https://github.com/PyAV-Org/PyAV
130
131
132
133
134
135
136
137
138

* video_reader - This needs ffmpeg to be installed and torchvision to be built from source. There shouldn't be any conflicting version of ffmpeg installed. Currently, this is only supported on Linux.

.. code:: bash

     conda install -c conda-forge ffmpeg
     python setup.py install


139
140
141
Using the models on C++
=======================
TorchVision provides an example project for how to use the models on C++ using JIT Script.
142
143
144
145
146
147
148

Installation From source:

.. code:: bash

    mkdir build
    cd build
149
    # Add -DWITH_CUDA=on support for the CUDA if needed
150
    cmake ..
151
    make
152
153
    make install

154
Once installed, the library can be accessed in cmake (after properly configuring ``CMAKE_PREFIX_PATH``) via the :code:`TorchVision::TorchVision` target:
bmanga's avatar
bmanga committed
155
156
157
158

.. code:: rest

	find_package(TorchVision REQUIRED)
159
	target_link_libraries(my-target PUBLIC TorchVision::TorchVision)
bmanga's avatar
bmanga committed
160

161
162
163
164
The ``TorchVision`` package will also automatically look for the ``Torch`` package and add it as a dependency to ``my-target``,
so make sure that it is also available to cmake via the ``CMAKE_PREFIX_PATH``.

For an example setup, take a look at ``examples/cpp/hello_world``.
bmanga's avatar
bmanga committed
165

166
167
168
169
Python linking is disabled by default when compiling TorchVision with CMake, this allows you to run models without any Python 
dependency. In some special cases where TorchVision's operators are used from Python code, you may need to link to Python. This 
can be done by passing ``-DUSE_PYTHON=on`` to CMake.

170
171
172
173
174
TorchVision Operators
---------------------
In order to get the torchvision operators registered with torch (eg. for the JIT), all you need to do is to ensure that you
:code:`#include <torchvision/vision.h>` in your project.

175
176
Documentation
=============
scott-vsi's avatar
scott-vsi committed
177
You can find the API documentation on the pytorch website: https://pytorch.org/vision/stable/index.html
edgarriba's avatar
edgarriba committed
178

179
180
Contributing
============
vfdev's avatar
vfdev committed
181

182
See the `CONTRIBUTING <CONTRIBUTING.md>`_ file for how to help out.
Vincent QB's avatar
Vincent QB committed
183
184
185
186
187
188
189

Disclaimer on Datasets
======================

This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!
190
191
192
193
194
195
196

Pre-trained Model License
=========================

The pre-trained models provided in this library may have their own licenses or terms and conditions derived from the dataset used for training. It is your responsibility to determine whether you have permission to use the models for your use case.

More specifically, SWAG models are released under the CC-BY-NC 4.0 license. See `SWAG LICENSE <https://github.com/facebookresearch/SWAG/blob/main/LICENSE>`_ for additional details.