presets.py 3.09 KB
Newer Older
1
import torch
2
from torchvision.transforms import autoaugment, transforms
3
from torchvision.transforms.functional import InterpolationMode
4
5
6


class ClassificationPresetTrain:
7
8
    def __init__(
        self,
9
        *,
10
11
12
        crop_size,
        mean=(0.485, 0.456, 0.406),
        std=(0.229, 0.224, 0.225),
13
        interpolation=InterpolationMode.BILINEAR,
14
15
        hflip_prob=0.5,
        auto_augment_policy=None,
Ponku's avatar
Ponku committed
16
17
        ra_magnitude=9,
        augmix_severity=3,
18
        random_erase_prob=0.0,
19
        backend="pil",
20
    ):
21
22
23
24
25
26
27
28
        trans = []
        backend = backend.lower()
        if backend == "tensor":
            trans.append(transforms.PILToTensor())
        elif backend != "pil":
            raise ValueError(f"backend can be 'tensor' or 'pil', but got {backend}")

        trans.append(transforms.RandomResizedCrop(crop_size, interpolation=interpolation, antialias=True))
29
30
31
        if hflip_prob > 0:
            trans.append(transforms.RandomHorizontalFlip(hflip_prob))
        if auto_augment_policy is not None:
32
            if auto_augment_policy == "ra":
Ponku's avatar
Ponku committed
33
                trans.append(autoaugment.RandAugment(interpolation=interpolation, magnitude=ra_magnitude))
34
            elif auto_augment_policy == "ta_wide":
35
                trans.append(autoaugment.TrivialAugmentWide(interpolation=interpolation))
36
            elif auto_augment_policy == "augmix":
Ponku's avatar
Ponku committed
37
                trans.append(autoaugment.AugMix(interpolation=interpolation, severity=augmix_severity))
38
39
            else:
                aa_policy = autoaugment.AutoAugmentPolicy(auto_augment_policy)
40
                trans.append(autoaugment.AutoAugment(policy=aa_policy, interpolation=interpolation))
41
42
43
44

        if backend == "pil":
            trans.append(transforms.PILToTensor())

45
46
47
48
49
50
        trans.extend(
            [
                transforms.ConvertImageDtype(torch.float),
                transforms.Normalize(mean=mean, std=std),
            ]
        )
51
52
53
54
55
56
57
58
59
60
        if random_erase_prob > 0:
            trans.append(transforms.RandomErasing(p=random_erase_prob))

        self.transforms = transforms.Compose(trans)

    def __call__(self, img):
        return self.transforms(img)


class ClassificationPresetEval:
61
62
    def __init__(
        self,
63
        *,
64
65
66
67
68
        crop_size,
        resize_size=256,
        mean=(0.485, 0.456, 0.406),
        std=(0.229, 0.224, 0.225),
        interpolation=InterpolationMode.BILINEAR,
69
        backend="pil",
70
    ):
71
        trans = []
72

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
        backend = backend.lower()
        if backend == "tensor":
            trans.append(transforms.PILToTensor())
        else:
            raise ValueError(f"backend can be 'tensor' or 'pil', but got {backend}")

        trans += [
            transforms.Resize(resize_size, interpolation=interpolation, antialias=True),
            transforms.CenterCrop(crop_size),
        ]

        if backend == "pil":
            trans.append(transforms.PILToTensor())

        trans += [
            transforms.ConvertImageDtype(torch.float),
            transforms.Normalize(mean=mean, std=std),
        ]

        self.transforms = transforms.Compose(trans)
93
94
95

    def __call__(self, img):
        return self.transforms(img)