import torch from torchvision.transforms import autoaugment, transforms from torchvision.transforms.functional import InterpolationMode class ClassificationPresetTrain: def __init__( self, *, crop_size, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), interpolation=InterpolationMode.BILINEAR, hflip_prob=0.5, auto_augment_policy=None, ra_magnitude=9, augmix_severity=3, random_erase_prob=0.0, backend="pil", ): trans = [] backend = backend.lower() if backend == "tensor": trans.append(transforms.PILToTensor()) elif backend != "pil": raise ValueError(f"backend can be 'tensor' or 'pil', but got {backend}") trans.append(transforms.RandomResizedCrop(crop_size, interpolation=interpolation, antialias=True)) if hflip_prob > 0: trans.append(transforms.RandomHorizontalFlip(hflip_prob)) if auto_augment_policy is not None: if auto_augment_policy == "ra": trans.append(autoaugment.RandAugment(interpolation=interpolation, magnitude=ra_magnitude)) elif auto_augment_policy == "ta_wide": trans.append(autoaugment.TrivialAugmentWide(interpolation=interpolation)) elif auto_augment_policy == "augmix": trans.append(autoaugment.AugMix(interpolation=interpolation, severity=augmix_severity)) else: aa_policy = autoaugment.AutoAugmentPolicy(auto_augment_policy) trans.append(autoaugment.AutoAugment(policy=aa_policy, interpolation=interpolation)) if backend == "pil": trans.append(transforms.PILToTensor()) trans.extend( [ transforms.ConvertImageDtype(torch.float), transforms.Normalize(mean=mean, std=std), ] ) if random_erase_prob > 0: trans.append(transforms.RandomErasing(p=random_erase_prob)) self.transforms = transforms.Compose(trans) def __call__(self, img): return self.transforms(img) class ClassificationPresetEval: def __init__( self, *, crop_size, resize_size=256, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), interpolation=InterpolationMode.BILINEAR, backend="pil", ): trans = [] backend = backend.lower() if backend == "tensor": trans.append(transforms.PILToTensor()) else: raise ValueError(f"backend can be 'tensor' or 'pil', but got {backend}") trans += [ transforms.Resize(resize_size, interpolation=interpolation, antialias=True), transforms.CenterCrop(crop_size), ] if backend == "pil": trans.append(transforms.PILToTensor()) trans += [ transforms.ConvertImageDtype(torch.float), transforms.Normalize(mean=mean, std=std), ] self.transforms = transforms.Compose(trans) def __call__(self, img): return self.transforms(img)