ssd.py 28.9 KB
Newer Older
1
2
3
4
import warnings
from collections import OrderedDict
from typing import Any, Dict, List, Optional, Tuple

5
6
7
8
9
import torch
import torch.nn.functional as F
from torch import nn, Tensor

from ...ops import boxes as box_ops
10
from ...transforms._presets import ObjectDetection
11
from ...utils import _log_api_usage_once
12
from .._api import register_model, Weights, WeightsEnum
13
from .._meta import _COCO_CATEGORIES
14
15
from .._utils import _ovewrite_value_param, handle_legacy_interface
from ..vgg import VGG, vgg16, VGG16_Weights
16
17
18
19
20
21
from . import _utils as det_utils
from .anchor_utils import DefaultBoxGenerator
from .backbone_utils import _validate_trainable_layers
from .transform import GeneralizedRCNNTransform


22
23
24
25
26
27
28
29
30
31
32
33
34
__all__ = [
    "SSD300_VGG16_Weights",
    "ssd300_vgg16",
]


class SSD300_VGG16_Weights(WeightsEnum):
    COCO_V1 = Weights(
        url="https://download.pytorch.org/models/ssd300_vgg16_coco-b556d3b4.pth",
        transforms=ObjectDetection,
        meta={
            "num_params": 35641826,
            "categories": _COCO_CATEGORIES,
35
            "min_size": (1, 1),
36
            "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#ssd300-vgg16",
37
38
39
40
            "_metrics": {
                "COCO-val2017": {
                    "box_map": 25.1,
                }
41
            },
42
            "_docs": """These weights were produced by following a similar training recipe as on the paper.""",
43
44
45
        },
    )
    DEFAULT = COCO_V1
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63


def _xavier_init(conv: nn.Module):
    for layer in conv.modules():
        if isinstance(layer, nn.Conv2d):
            torch.nn.init.xavier_uniform_(layer.weight)
            if layer.bias is not None:
                torch.nn.init.constant_(layer.bias, 0.0)


class SSDHead(nn.Module):
    def __init__(self, in_channels: List[int], num_anchors: List[int], num_classes: int):
        super().__init__()
        self.classification_head = SSDClassificationHead(in_channels, num_anchors, num_classes)
        self.regression_head = SSDRegressionHead(in_channels, num_anchors)

    def forward(self, x: List[Tensor]) -> Dict[str, Tensor]:
        return {
64
65
            "bbox_regression": self.regression_head(x),
            "cls_logits": self.classification_head(x),
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
        }


class SSDScoringHead(nn.Module):
    def __init__(self, module_list: nn.ModuleList, num_columns: int):
        super().__init__()
        self.module_list = module_list
        self.num_columns = num_columns

    def _get_result_from_module_list(self, x: Tensor, idx: int) -> Tensor:
        """
        This is equivalent to self.module_list[idx](x),
        but torchscript doesn't support this yet
        """
        num_blocks = len(self.module_list)
        if idx < 0:
            idx += num_blocks
        out = x
84
        for i, module in enumerate(self.module_list):
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
            if i == idx:
                out = module(x)
        return out

    def forward(self, x: List[Tensor]) -> Tensor:
        all_results = []

        for i, features in enumerate(x):
            results = self._get_result_from_module_list(features, i)

            # Permute output from (N, A * K, H, W) to (N, HWA, K).
            N, _, H, W = results.shape
            results = results.view(N, -1, self.num_columns, H, W)
            results = results.permute(0, 3, 4, 1, 2)
            results = results.reshape(N, -1, self.num_columns)  # Size=(N, HWA, K)

            all_results.append(results)

        return torch.cat(all_results, dim=1)


class SSDClassificationHead(SSDScoringHead):
    def __init__(self, in_channels: List[int], num_anchors: List[int], num_classes: int):
        cls_logits = nn.ModuleList()
        for channels, anchors in zip(in_channels, num_anchors):
            cls_logits.append(nn.Conv2d(channels, num_classes * anchors, kernel_size=3, padding=1))
        _xavier_init(cls_logits)
        super().__init__(cls_logits, num_classes)


class SSDRegressionHead(SSDScoringHead):
    def __init__(self, in_channels: List[int], num_anchors: List[int]):
        bbox_reg = nn.ModuleList()
        for channels, anchors in zip(in_channels, num_anchors):
            bbox_reg.append(nn.Conv2d(channels, 4 * anchors, kernel_size=3, padding=1))
        _xavier_init(bbox_reg)
        super().__init__(bbox_reg, 4)


class SSD(nn.Module):
    """
    Implements SSD architecture from `"SSD: Single Shot MultiBox Detector" <https://arxiv.org/abs/1512.02325>`_.

    The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
    image, and should be in 0-1 range. Different images can have different sizes but they will be resized
    to a fixed size before passing it to the backbone.

    The behavior of the model changes depending if it is in training or evaluation mode.

    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
    containing:
        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
        - labels (Int64Tensor[N]): the class label for each ground-truth box

    The model returns a Dict[Tensor] during training, containing the classification and regression
    losses.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
145
146
    follows, where ``N`` is the number of detections:

147
148
        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
149
150
        - labels (Int64Tensor[N]): the predicted labels for each detection
        - scores (Tensor[N]): the scores for each detection
151
152
153
154
155
156
157
158
159

    Args:
        backbone (nn.Module): the network used to compute the features for the model.
            It should contain an out_channels attribute with the list of the output channels of
            each feature map. The backbone should return a single Tensor or an OrderedDict[Tensor].
        anchor_generator (DefaultBoxGenerator): module that generates the default boxes for a
            set of feature maps.
        size (Tuple[int, int]): the width and height to which images will be rescaled before feeding them
            to the backbone.
160
        num_classes (int): number of output classes of the model (including the background).
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
        image_mean (Tuple[float, float, float]): mean values used for input normalization.
            They are generally the mean values of the dataset on which the backbone has been trained
            on
        image_std (Tuple[float, float, float]): std values used for input normalization.
            They are generally the std values of the dataset on which the backbone has been trained on
        head (nn.Module, optional): Module run on top of the backbone features. Defaults to a module containing
            a classification and regression module.
        score_thresh (float): Score threshold used for postprocessing the detections.
        nms_thresh (float): NMS threshold used for postprocessing the detections.
        detections_per_img (int): Number of best detections to keep after NMS.
        iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be
            considered as positive during training.
        topk_candidates (int): Number of best detections to keep before NMS.
        positive_fraction (float): a number between 0 and 1 which indicates the proportion of positive
            proposals used during the training of the classification head. It is used to estimate the negative to
            positive ratio.
    """
178

179
    __annotations__ = {
180
181
        "box_coder": det_utils.BoxCoder,
        "proposal_matcher": det_utils.Matcher,
182
183
    }

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    def __init__(
        self,
        backbone: nn.Module,
        anchor_generator: DefaultBoxGenerator,
        size: Tuple[int, int],
        num_classes: int,
        image_mean: Optional[List[float]] = None,
        image_std: Optional[List[float]] = None,
        head: Optional[nn.Module] = None,
        score_thresh: float = 0.01,
        nms_thresh: float = 0.45,
        detections_per_img: int = 200,
        iou_thresh: float = 0.5,
        topk_candidates: int = 400,
        positive_fraction: float = 0.25,
199
        **kwargs: Any,
200
    ):
201
        super().__init__()
Kai Zhang's avatar
Kai Zhang committed
202
        _log_api_usage_once(self)
203
204
205
206
207

        self.backbone = backbone

        self.anchor_generator = anchor_generator

208
        self.box_coder = det_utils.BoxCoder(weights=(10.0, 10.0, 5.0, 5.0))
209
210

        if head is None:
211
            if hasattr(backbone, "out_channels"):
212
213
214
215
                out_channels = backbone.out_channels
            else:
                out_channels = det_utils.retrieve_out_channels(backbone, size)

216
217
218
219
            if len(out_channels) != len(anchor_generator.aspect_ratios):
                raise ValueError(
                    f"The length of the output channels from the backbone ({len(out_channels)}) do not match the length of the anchor generator aspect ratios ({len(anchor_generator.aspect_ratios)})"
                )
220
221
222
223
224
225
226
227
228
229
230

            num_anchors = self.anchor_generator.num_anchors_per_location()
            head = SSDHead(out_channels, num_anchors, num_classes)
        self.head = head

        self.proposal_matcher = det_utils.SSDMatcher(iou_thresh)

        if image_mean is None:
            image_mean = [0.485, 0.456, 0.406]
        if image_std is None:
            image_std = [0.229, 0.224, 0.225]
231
        self.transform = GeneralizedRCNNTransform(
232
            min(size), max(size), image_mean, image_std, size_divisible=1, fixed_size=size, **kwargs
233
        )
234
235
236
237
238
239
240
241
242
243
244

        self.score_thresh = score_thresh
        self.nms_thresh = nms_thresh
        self.detections_per_img = detections_per_img
        self.topk_candidates = topk_candidates
        self.neg_to_pos_ratio = (1.0 - positive_fraction) / positive_fraction

        # used only on torchscript mode
        self._has_warned = False

    @torch.jit.unused
245
246
247
    def eager_outputs(
        self, losses: Dict[str, Tensor], detections: List[Dict[str, Tensor]]
    ) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]:
248
249
250
251
252
        if self.training:
            return losses

        return detections

253
254
255
256
257
258
259
260
261
    def compute_loss(
        self,
        targets: List[Dict[str, Tensor]],
        head_outputs: Dict[str, Tensor],
        anchors: List[Tensor],
        matched_idxs: List[Tensor],
    ) -> Dict[str, Tensor]:
        bbox_regression = head_outputs["bbox_regression"]
        cls_logits = head_outputs["cls_logits"]
262
263
264
265
266

        # Match original targets with default boxes
        num_foreground = 0
        bbox_loss = []
        cls_targets = []
267
268
269
270
271
272
273
        for (
            targets_per_image,
            bbox_regression_per_image,
            cls_logits_per_image,
            anchors_per_image,
            matched_idxs_per_image,
        ) in zip(targets, bbox_regression, cls_logits, anchors, matched_idxs):
274
275
276
277
278
279
            # produce the matching between boxes and targets
            foreground_idxs_per_image = torch.where(matched_idxs_per_image >= 0)[0]
            foreground_matched_idxs_per_image = matched_idxs_per_image[foreground_idxs_per_image]
            num_foreground += foreground_matched_idxs_per_image.numel()

            # Calculate regression loss
280
            matched_gt_boxes_per_image = targets_per_image["boxes"][foreground_matched_idxs_per_image]
281
282
283
            bbox_regression_per_image = bbox_regression_per_image[foreground_idxs_per_image, :]
            anchors_per_image = anchors_per_image[foreground_idxs_per_image, :]
            target_regression = self.box_coder.encode_single(matched_gt_boxes_per_image, anchors_per_image)
284
285
286
            bbox_loss.append(
                torch.nn.functional.smooth_l1_loss(bbox_regression_per_image, target_regression, reduction="sum")
            )
287
288

            # Estimate ground truth for class targets
289
290
291
292
293
294
295
296
            gt_classes_target = torch.zeros(
                (cls_logits_per_image.size(0),),
                dtype=targets_per_image["labels"].dtype,
                device=targets_per_image["labels"].device,
            )
            gt_classes_target[foreground_idxs_per_image] = targets_per_image["labels"][
                foreground_matched_idxs_per_image
            ]
297
298
299
300
301
302
303
            cls_targets.append(gt_classes_target)

        bbox_loss = torch.stack(bbox_loss)
        cls_targets = torch.stack(cls_targets)

        # Calculate classification loss
        num_classes = cls_logits.size(-1)
304
305
306
        cls_loss = F.cross_entropy(cls_logits.view(-1, num_classes), cls_targets.view(-1), reduction="none").view(
            cls_targets.size()
        )
307
308
309
310
311
312

        # Hard Negative Sampling
        foreground_idxs = cls_targets > 0
        num_negative = self.neg_to_pos_ratio * foreground_idxs.sum(1, keepdim=True)
        # num_negative[num_negative < self.neg_to_pos_ratio] = self.neg_to_pos_ratio
        negative_loss = cls_loss.clone()
313
        negative_loss[foreground_idxs] = -float("inf")  # use -inf to detect positive values that creeped in the sample
314
315
316
317
318
319
        values, idx = negative_loss.sort(1, descending=True)
        # background_idxs = torch.logical_and(idx.sort(1)[1] < num_negative, torch.isfinite(values))
        background_idxs = idx.sort(1)[1] < num_negative

        N = max(1, num_foreground)
        return {
320
321
            "bbox_regression": bbox_loss.sum() / N,
            "classification": (cls_loss[foreground_idxs].sum() + cls_loss[background_idxs].sum()) / N,
322
323
        }

324
325
326
    def forward(
        self, images: List[Tensor], targets: Optional[List[Dict[str, Tensor]]] = None
    ) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]:
327
        if self.training:
328
            if targets is None:
329
330
331
332
333
334
335
336
337
338
339
                torch._assert(False, "targets should not be none when in training mode")
            else:
                for target in targets:
                    boxes = target["boxes"]
                    if isinstance(boxes, torch.Tensor):
                        torch._assert(
                            len(boxes.shape) == 2 and boxes.shape[-1] == 4,
                            f"Expected target boxes to be a tensor of shape [N, 4], got {boxes.shape}.",
                        )
                    else:
                        torch._assert(False, f"Expected target boxes to be of type Tensor, got {type(boxes)}.")
340
341
342
343
344

        # get the original image sizes
        original_image_sizes: List[Tuple[int, int]] = []
        for img in images:
            val = img.shape[-2:]
345
346
347
348
            torch._assert(
                len(val) == 2,
                f"expecting the last two dimensions of the Tensor to be H and W instead got {img.shape[-2:]}",
            )
349
350
351
352
353
354
355
356
357
358
359
360
361
            original_image_sizes.append((val[0], val[1]))

        # transform the input
        images, targets = self.transform(images, targets)

        # Check for degenerate boxes
        if targets is not None:
            for target_idx, target in enumerate(targets):
                boxes = target["boxes"]
                degenerate_boxes = boxes[:, 2:] <= boxes[:, :2]
                if degenerate_boxes.any():
                    bb_idx = torch.where(degenerate_boxes.any(dim=1))[0][0]
                    degen_bb: List[float] = boxes[bb_idx].tolist()
362
363
                    torch._assert(
                        False,
364
                        "All bounding boxes should have positive height and width."
365
                        f" Found invalid box {degen_bb} for target at index {target_idx}.",
366
                    )
367
368
369
370

        # get the features from the backbone
        features = self.backbone(images.tensors)
        if isinstance(features, torch.Tensor):
371
            features = OrderedDict([("0", features)])
372
373
374
375
376
377
378
379
380
381
382
383
384

        features = list(features.values())

        # compute the ssd heads outputs using the features
        head_outputs = self.head(features)

        # create the set of anchors
        anchors = self.anchor_generator(images, features)

        losses = {}
        detections: List[Dict[str, Tensor]] = []
        if self.training:
            matched_idxs = []
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
            if targets is None:
                torch._assert(False, "targets should not be none when in training mode")
            else:
                for anchors_per_image, targets_per_image in zip(anchors, targets):
                    if targets_per_image["boxes"].numel() == 0:
                        matched_idxs.append(
                            torch.full(
                                (anchors_per_image.size(0),), -1, dtype=torch.int64, device=anchors_per_image.device
                            )
                        )
                        continue

                    match_quality_matrix = box_ops.box_iou(targets_per_image["boxes"], anchors_per_image)
                    matched_idxs.append(self.proposal_matcher(match_quality_matrix))

                losses = self.compute_loss(targets, head_outputs, anchors, matched_idxs)
401
402
403
404
405
406
407
408
409
410
411
        else:
            detections = self.postprocess_detections(head_outputs, anchors, images.image_sizes)
            detections = self.transform.postprocess(detections, images.image_sizes, original_image_sizes)

        if torch.jit.is_scripting():
            if not self._has_warned:
                warnings.warn("SSD always returns a (Losses, Detections) tuple in scripting")
                self._has_warned = True
            return losses, detections
        return self.eager_outputs(losses, detections)

412
413
414
415
416
    def postprocess_detections(
        self, head_outputs: Dict[str, Tensor], image_anchors: List[Tensor], image_shapes: List[Tuple[int, int]]
    ) -> List[Dict[str, Tensor]]:
        bbox_regression = head_outputs["bbox_regression"]
        pred_scores = F.softmax(head_outputs["cls_logits"], dim=-1)
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437

        num_classes = pred_scores.size(-1)
        device = pred_scores.device

        detections: List[Dict[str, Tensor]] = []

        for boxes, scores, anchors, image_shape in zip(bbox_regression, pred_scores, image_anchors, image_shapes):
            boxes = self.box_coder.decode_single(boxes, anchors)
            boxes = box_ops.clip_boxes_to_image(boxes, image_shape)

            image_boxes = []
            image_scores = []
            image_labels = []
            for label in range(1, num_classes):
                score = scores[:, label]

                keep_idxs = score > self.score_thresh
                score = score[keep_idxs]
                box = boxes[keep_idxs]

                # keep only topk scoring predictions
438
                num_topk = det_utils._topk_min(score, self.topk_candidates, 0)
439
440
441
442
443
444
445
446
447
448
449
450
451
                score, idxs = score.topk(num_topk)
                box = box[idxs]

                image_boxes.append(box)
                image_scores.append(score)
                image_labels.append(torch.full_like(score, fill_value=label, dtype=torch.int64, device=device))

            image_boxes = torch.cat(image_boxes, dim=0)
            image_scores = torch.cat(image_scores, dim=0)
            image_labels = torch.cat(image_labels, dim=0)

            # non-maximum suppression
            keep = box_ops.batched_nms(image_boxes, image_scores, image_labels, self.nms_thresh)
452
453
454
455
456
457
458
459
460
            keep = keep[: self.detections_per_img]

            detections.append(
                {
                    "boxes": image_boxes[keep],
                    "scores": image_scores[keep],
                    "labels": image_labels[keep],
                }
            )
461
462
463
464
        return detections


class SSDFeatureExtractorVGG(nn.Module):
465
    def __init__(self, backbone: nn.Module, highres: bool):
466
467
468
469
470
471
472
473
474
475
476
        super().__init__()

        _, _, maxpool3_pos, maxpool4_pos, _ = (i for i, layer in enumerate(backbone) if isinstance(layer, nn.MaxPool2d))

        # Patch ceil_mode for maxpool3 to get the same WxH output sizes as the paper
        backbone[maxpool3_pos].ceil_mode = True

        # parameters used for L2 regularization + rescaling
        self.scale_weight = nn.Parameter(torch.ones(512) * 20)

        # Multiple Feature maps - page 4, Fig 2 of SSD paper
477
        self.features = nn.Sequential(*backbone[:maxpool4_pos])  # until conv4_3
478
479

        # SSD300 case - page 4, Fig 2 of SSD paper
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
        extra = nn.ModuleList(
            [
                nn.Sequential(
                    nn.Conv2d(1024, 256, kernel_size=1),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(256, 512, kernel_size=3, padding=1, stride=2),  # conv8_2
                    nn.ReLU(inplace=True),
                ),
                nn.Sequential(
                    nn.Conv2d(512, 128, kernel_size=1),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(128, 256, kernel_size=3, padding=1, stride=2),  # conv9_2
                    nn.ReLU(inplace=True),
                ),
                nn.Sequential(
                    nn.Conv2d(256, 128, kernel_size=1),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(128, 256, kernel_size=3),  # conv10_2
                    nn.ReLU(inplace=True),
                ),
                nn.Sequential(
                    nn.Conv2d(256, 128, kernel_size=1),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(128, 256, kernel_size=3),  # conv11_2
                    nn.ReLU(inplace=True),
                ),
            ]
        )
508
509
        if highres:
            # Additional layers for the SSD512 case. See page 11, footernote 5.
510
511
512
513
514
515
516
517
            extra.append(
                nn.Sequential(
                    nn.Conv2d(256, 128, kernel_size=1),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(128, 256, kernel_size=4),  # conv12_2
                    nn.ReLU(inplace=True),
                )
            )
518
519
520
521
522
523
524
        _xavier_init(extra)

        fc = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=False),  # add modified maxpool5
            nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=3, padding=6, dilation=6),  # FC6 with atrous
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=1024, out_channels=1024, kernel_size=1),  # FC7
525
            nn.ReLU(inplace=True),
526
527
        )
        _xavier_init(fc)
528
529
530
531
532
533
534
        extra.insert(
            0,
            nn.Sequential(
                *backbone[maxpool4_pos:-1],  # until conv5_3, skip maxpool5
                fc,
            ),
        )
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
        self.extra = extra

    def forward(self, x: Tensor) -> Dict[str, Tensor]:
        # L2 regularization + Rescaling of 1st block's feature map
        x = self.features(x)
        rescaled = self.scale_weight.view(1, -1, 1, 1) * F.normalize(x)
        output = [rescaled]

        # Calculating Feature maps for the rest blocks
        for block in self.extra:
            x = block(x)
            output.append(x)

        return OrderedDict([(str(i), v) for i, v in enumerate(output)])


551
def _vgg_extractor(backbone: VGG, highres: bool, trainable_layers: int):
552
    backbone = backbone.features
553
    # Gather the indices of maxpools. These are the locations of output blocks.
554
    stage_indices = [0] + [i for i, b in enumerate(backbone) if isinstance(b, nn.MaxPool2d)][:-1]
555
556
557
    num_stages = len(stage_indices)

    # find the index of the layer from which we wont freeze
558
559
560
561
    torch._assert(
        0 <= trainable_layers <= num_stages,
        f"trainable_layers should be in the range [0, {num_stages}]. Instead got {trainable_layers}",
    )
562
    freeze_before = len(backbone) if trainable_layers == 0 else stage_indices[num_stages - trainable_layers]
563
564
565
566
567

    for b in backbone[:freeze_before]:
        for parameter in b.parameters():
            parameter.requires_grad_(False)

568
    return SSDFeatureExtractorVGG(backbone, highres)
569
570


571
@register_model()
572
573
574
575
@handle_legacy_interface(
    weights=("pretrained", SSD300_VGG16_Weights.COCO_V1),
    weights_backbone=("pretrained_backbone", VGG16_Weights.IMAGENET1K_FEATURES),
)
576
def ssd300_vgg16(
577
578
    *,
    weights: Optional[SSD300_VGG16_Weights] = None,
579
    progress: bool = True,
580
581
    num_classes: Optional[int] = None,
    weights_backbone: Optional[VGG16_Weights] = VGG16_Weights.IMAGENET1K_FEATURES,
582
583
    trainable_backbone_layers: Optional[int] = None,
    **kwargs: Any,
584
) -> SSD:
585
586
    """The SSD300 model is based on the `SSD: Single Shot MultiBox Detector
    <https://arxiv.org/abs/1512.02325>`_ paper.
587

588
589
    .. betastatus:: detection module

590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
    The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
    image, and should be in 0-1 range. Different images can have different sizes but they will be resized
    to a fixed size before passing it to the backbone.

    The behavior of the model changes depending if it is in training or evaluation mode.

    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
    containing:

        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
        - labels (Int64Tensor[N]): the class label for each ground-truth box

    The model returns a Dict[Tensor] during training, containing the classification and regression
    losses.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
    follows, where ``N`` is the number of detections:

        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
        - labels (Int64Tensor[N]): the predicted labels for each detection
        - scores (Tensor[N]): the scores for each detection
614
615
616

    Example:

617
        >>> model = torchvision.models.detection.ssd300_vgg16(weights=SSD300_VGG16_Weights.DEFAULT)
618
        >>> model.eval()
619
        >>> x = [torch.rand(3, 300, 300), torch.rand(3, 500, 400)]
620
621
622
        >>> predictions = model(x)

    Args:
623
624
625
626
627
628
629
        weights (:class:`~torchvision.models.detection.SSD300_VGG16_Weights`, optional): The pretrained
                weights to use. See
                :class:`~torchvision.models.detection.SSD300_VGG16_Weights`
                below for more details, and possible values. By default, no
                pre-trained weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr
            Default is True.
630
        num_classes (int, optional): number of output classes of the model (including the background)
631
632
        weights_backbone (:class:`~torchvision.models.VGG16_Weights`, optional): The pretrained weights for the
            backbone
633
        trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from final block.
634
635
            Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is
            passed (the default) this value is set to 4.
636
637
638
639
640
641
642
        **kwargs: parameters passed to the ``torchvision.models.detection.SSD``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/detection/ssd.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.detection.SSD300_VGG16_Weights
        :members:
643
    """
644
645
646
    weights = SSD300_VGG16_Weights.verify(weights)
    weights_backbone = VGG16_Weights.verify(weights_backbone)

647
    if "size" in kwargs:
648
649
650
651
652
653
654
        warnings.warn("The size of the model is already fixed; ignoring the parameter.")

    if weights is not None:
        weights_backbone = None
        num_classes = _ovewrite_value_param(num_classes, len(weights.meta["categories"]))
    elif num_classes is None:
        num_classes = 91
655

656
    trainable_backbone_layers = _validate_trainable_layers(
657
        weights is not None or weights_backbone is not None, trainable_backbone_layers, 5, 4
658
    )
659

660
    # Use custom backbones more appropriate for SSD
661
    backbone = vgg16(weights=weights_backbone, progress=progress)
662
    backbone = _vgg_extractor(backbone, False, trainable_backbone_layers)
663
664
665
666
667
    anchor_generator = DefaultBoxGenerator(
        [[2], [2, 3], [2, 3], [2, 3], [2], [2]],
        scales=[0.07, 0.15, 0.33, 0.51, 0.69, 0.87, 1.05],
        steps=[8, 16, 32, 64, 100, 300],
    )
668
669
670
671
672
673

    defaults = {
        # Rescale the input in a way compatible to the backbone
        "image_mean": [0.48235, 0.45882, 0.40784],
        "image_std": [1.0 / 255.0, 1.0 / 255.0, 1.0 / 255.0],  # undo the 0-1 scaling of toTensor
    }
674
    kwargs: Any = {**defaults, **kwargs}
675
    model = SSD(backbone, anchor_generator, (300, 300), num_classes, **kwargs)
676
677
678
679

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))

680
    return model
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702


# The dictionary below is internal implementation detail and will be removed in v0.15
from .._utils import _ModelURLs


model_urls = _ModelURLs(
    {
        "ssd300_vgg16_coco": SSD300_VGG16_Weights.COCO_V1.url,
    }
)


backbone_urls = _ModelURLs(
    {
        # We port the features of a VGG16 backbone trained by amdegroot because unlike the one on TorchVision, it uses
        # the same input standardization method as the paper.
        # Ref: https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth
        # Only the `features` weights have proper values, those on the `classifier` module are filled with nans.
        "vgg16_features": VGG16_Weights.IMAGENET1K_FEATURES.url,
    }
)