utils.py 1.61 KB
Newer Older
1
2
3
4
import torch
from torch import nn


5
def _replace_relu(module: nn.Module) -> None:
6
7
8
9
10
11
12
13
14
15
16
17
18
    reassign = {}
    for name, mod in module.named_children():
        _replace_relu(mod)
        # Checking for explicit type instead of instance
        # as we only want to replace modules of the exact type
        # not inherited classes
        if type(mod) == nn.ReLU or type(mod) == nn.ReLU6:
            reassign[name] = nn.ReLU(inplace=False)

    for key, value in reassign.items():
        module._modules[key] = value


19
def quantize_model(model: nn.Module, backend: str) -> None:
20
21
22
23
24
25
26
    _dummy_input_data = torch.rand(1, 3, 299, 299)
    if backend not in torch.backends.quantized.supported_engines:
        raise RuntimeError("Quantized backend not supported ")
    torch.backends.quantized.engine = backend
    model.eval()
    # Make sure that weight qconfig matches that of the serialized models
    if backend == 'fbgemm':
27
        model.qconfig = torch.quantization.QConfig(  # type: ignore[assignment]
28
29
30
            activation=torch.quantization.default_observer,
            weight=torch.quantization.default_per_channel_weight_observer)
    elif backend == 'qnnpack':
31
        model.qconfig = torch.quantization.QConfig(  # type: ignore[assignment]
32
33
34
            activation=torch.quantization.default_observer,
            weight=torch.quantization.default_weight_observer)

35
36
    # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659
    model.fuse_model()  # type: ignore[operator]
37
38
39
40
41
    torch.quantization.prepare(model, inplace=True)
    model(_dummy_input_data)
    torch.quantization.convert(model, inplace=True)

    return