sbd.py 5.08 KB
Newer Older
1
import os
2
import shutil
3
from typing import Any, Callable, Optional, Tuple
4
5
6

import numpy as np
from PIL import Image
7

8
from .utils import download_and_extract_archive, download_url, verify_str_arg
9
from .vision import VisionDataset
10
11


12
class SBDataset(VisionDataset):
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
    """`Semantic Boundaries Dataset <http://home.bharathh.info/pubs/codes/SBD/download.html>`_

    The SBD currently contains annotations from 11355 images taken from the PASCAL VOC 2011 dataset.

    .. note ::

        Please note that the train and val splits included with this dataset are different from
        the splits in the PASCAL VOC dataset. In particular some "train" images might be part of
        VOC2012 val.
        If you are interested in testing on VOC 2012 val, then use `image_set='train_noval'`,
        which excludes all val images.

    .. warning::

        This class needs `scipy <https://docs.scipy.org/doc/>`_ to load target files from `.mat` format.

    Args:
        root (string): Root directory of the Semantic Boundaries Dataset
        image_set (string, optional): Select the image_set to use, ``train``, ``val`` or ``train_noval``.
            Image set ``train_noval`` excludes VOC 2012 val images.
        mode (string, optional): Select target type. Possible values 'boundaries' or 'segmentation'.
            In case of 'boundaries', the target is an array of shape `[num_classes, H, W]`,
            where `num_classes=20`.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
39
        transforms (callable, optional): A function/transform that takes input sample and its target as entry
40
41
42
43
            and returns a transformed version. Input sample is PIL image and target is a numpy array
            if `mode='boundaries'` or PIL image if `mode='segmentation'`.
    """

Aditya Oke's avatar
Aditya Oke committed
44
    url = "https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/semantic_contours/benchmark.tgz"
45
46
47
48
49
50
51
    md5 = "82b4d87ceb2ed10f6038a1cba92111cb"
    filename = "benchmark.tgz"

    voc_train_url = "http://home.bharathh.info/pubs/codes/SBD/train_noval.txt"
    voc_split_filename = "train_noval.txt"
    voc_split_md5 = "79bff800c5f0b1ec6b21080a3c066722"

52
    def __init__(
53
54
55
56
57
58
        self,
        root: str,
        image_set: str = "train",
        mode: str = "boundaries",
        download: bool = False,
        transforms: Optional[Callable] = None,
59
    ) -> None:
60
61
62

        try:
            from scipy.io import loadmat
63

64
65
            self._loadmat = loadmat
        except ImportError:
66
            raise RuntimeError("Scipy is not found. This dataset needs to have scipy installed: pip install scipy")
67

68
        super().__init__(root, transforms)
69
        self.image_set = verify_str_arg(image_set, "image_set", ("train", "val", "train_noval"))
70
        self.mode = verify_str_arg(mode, "mode", ("segmentation", "boundaries"))
71
72
        self.num_classes = 20

73
        sbd_root = self.root
74
75
        image_dir = os.path.join(sbd_root, "img")
        mask_dir = os.path.join(sbd_root, "cls")
76
77

        if download:
78
            download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.md5)
79
80
81
82
            extracted_ds_root = os.path.join(self.root, "benchmark_RELEASE", "dataset")
            for f in ["cls", "img", "inst", "train.txt", "val.txt"]:
                old_path = os.path.join(extracted_ds_root, f)
                shutil.move(old_path, sbd_root)
83
            download_url(self.voc_train_url, sbd_root, self.voc_split_filename, self.voc_split_md5)
84
85

        if not os.path.isdir(sbd_root):
86
            raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it")
87

88
        split_f = os.path.join(sbd_root, image_set.rstrip("\n") + ".txt")
89

90
        with open(os.path.join(split_f)) as fh:
91
            file_names = [x.strip() for x in fh.readlines()]
92
93
94
95

        self.images = [os.path.join(image_dir, x + ".jpg") for x in file_names]
        self.masks = [os.path.join(mask_dir, x + ".mat") for x in file_names]

96
        self._get_target = self._get_segmentation_target if self.mode == "segmentation" else self._get_boundaries_target
97

98
    def _get_segmentation_target(self, filepath: str) -> Image.Image:
99
        mat = self._loadmat(filepath)
100
        return Image.fromarray(mat["GTcls"][0]["Segmentation"][0])
101

102
    def _get_boundaries_target(self, filepath: str) -> np.ndarray:
103
        mat = self._loadmat(filepath)
104
105
106
107
        return np.concatenate(
            [np.expand_dims(mat["GTcls"][0]["Boundaries"][0][i][0].toarray(), axis=0) for i in range(self.num_classes)],
            axis=0,
        )
108

109
    def __getitem__(self, index: int) -> Tuple[Any, Any]:
110
        img = Image.open(self.images[index]).convert("RGB")
111
112
        target = self._get_target(self.masks[index])

113
114
        if self.transforms is not None:
            img, target = self.transforms(img, target)
115
116
117

        return img, target

118
    def __len__(self) -> int:
119
        return len(self.images)
120

121
    def extra_repr(self) -> str:
122
        lines = ["Image set: {image_set}", "Mode: {mode}"]
123
        return "\n".join(lines).format(**self.__dict__)