sbd.py 5.12 KB
Newer Older
1
import os
2
import shutil
3
from .vision import VisionDataset
4
5
6
7

import numpy as np

from PIL import Image
8
from .utils import download_url, verify_str_arg
9
10
11
from .voc import download_extract


12
class SBDataset(VisionDataset):
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
    """`Semantic Boundaries Dataset <http://home.bharathh.info/pubs/codes/SBD/download.html>`_

    The SBD currently contains annotations from 11355 images taken from the PASCAL VOC 2011 dataset.

    .. note ::

        Please note that the train and val splits included with this dataset are different from
        the splits in the PASCAL VOC dataset. In particular some "train" images might be part of
        VOC2012 val.
        If you are interested in testing on VOC 2012 val, then use `image_set='train_noval'`,
        which excludes all val images.

    .. warning::

        This class needs `scipy <https://docs.scipy.org/doc/>`_ to load target files from `.mat` format.

    Args:
        root (string): Root directory of the Semantic Boundaries Dataset
        image_set (string, optional): Select the image_set to use, ``train``, ``val`` or ``train_noval``.
            Image set ``train_noval`` excludes VOC 2012 val images.
        mode (string, optional): Select target type. Possible values 'boundaries' or 'segmentation'.
            In case of 'boundaries', the target is an array of shape `[num_classes, H, W]`,
            where `num_classes=20`.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
39
        transforms (callable, optional): A function/transform that takes input sample and its target as entry
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
            and returns a transformed version. Input sample is PIL image and target is a numpy array
            if `mode='boundaries'` or PIL image if `mode='segmentation'`.
    """

    url = "http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/semantic_contours/benchmark.tgz"
    md5 = "82b4d87ceb2ed10f6038a1cba92111cb"
    filename = "benchmark.tgz"

    voc_train_url = "http://home.bharathh.info/pubs/codes/SBD/train_noval.txt"
    voc_split_filename = "train_noval.txt"
    voc_split_md5 = "79bff800c5f0b1ec6b21080a3c066722"

    def __init__(self,
                 root,
                 image_set='train',
                 mode='boundaries',
                 download=False,
57
                 transforms=None):
58
59
60
61
62
63
64
65

        try:
            from scipy.io import loadmat
            self._loadmat = loadmat
        except ImportError:
            raise RuntimeError("Scipy is not found. This dataset needs to have scipy installed: "
                               "pip install scipy")

66
        super(SBDataset, self).__init__(root, transforms)
67
68
69
        self.image_set = verify_str_arg(image_set, "image_set",
                                        ("train", "val", "train_noval"))
        self.mode = verify_str_arg(mode, "mode", ("segmentation", "boundaries"))
70
71
        self.num_classes = 20

72
        sbd_root = self.root
73
74
75
76
77
        image_dir = os.path.join(sbd_root, 'img')
        mask_dir = os.path.join(sbd_root, 'cls')

        if download:
            download_extract(self.url, self.root, self.filename, self.md5)
78
79
80
81
            extracted_ds_root = os.path.join(self.root, "benchmark_RELEASE", "dataset")
            for f in ["cls", "img", "inst", "train.txt", "val.txt"]:
                old_path = os.path.join(extracted_ds_root, f)
                shutil.move(old_path, sbd_root)
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
            download_url(self.voc_train_url, sbd_root, self.voc_split_filename,
                         self.voc_split_md5)

        if not os.path.isdir(sbd_root):
            raise RuntimeError('Dataset not found or corrupted.' +
                               ' You can use download=True to download it')

        split_f = os.path.join(sbd_root, image_set.rstrip('\n') + '.txt')

        with open(os.path.join(split_f), "r") as f:
            file_names = [x.strip() for x in f.readlines()]

        self.images = [os.path.join(image_dir, x + ".jpg") for x in file_names]
        self.masks = [os.path.join(mask_dir, x + ".mat") for x in file_names]
        assert (len(self.images) == len(self.masks))

        self._get_target = self._get_segmentation_target \
            if self.mode == "segmentation" else self._get_boundaries_target

    def _get_segmentation_target(self, filepath):
        mat = self._loadmat(filepath)
        return Image.fromarray(mat['GTcls'][0]['Segmentation'][0])

    def _get_boundaries_target(self, filepath):
        mat = self._loadmat(filepath)
        return np.concatenate([np.expand_dims(mat['GTcls'][0]['Boundaries'][0][i][0].toarray(), axis=0)
                               for i in range(self.num_classes)], axis=0)

    def __getitem__(self, index):
        img = Image.open(self.images[index]).convert('RGB')
        target = self._get_target(self.masks[index])

114
115
        if self.transforms is not None:
            img, target = self.transforms(img, target)
116
117
118
119
120

        return img, target

    def __len__(self):
        return len(self.images)
121
122
123
124

    def extra_repr(self):
        lines = ["Image set: {image_set}", "Mode: {mode}"]
        return '\n'.join(lines).format(**self.__dict__)