shufflenetv2.py 12 KB
Newer Older
1
2
from functools import partial
from typing import Any, List, Optional, Union
3

4
5
import torch
import torch.nn as nn
6
from torch import Tensor
7
from torchvision.models import shufflenetv2
8

9
from ...transforms._presets import ImageClassification
10
11
12
from .._api import WeightsEnum, Weights
from .._meta import _IMAGENET_CATEGORIES
from .._utils import handle_legacy_interface, _ovewrite_named_param
13
14
15
16
17
18
from ..shufflenetv2 import (
    ShuffleNet_V2_X0_5_Weights,
    ShuffleNet_V2_X1_0_Weights,
    ShuffleNet_V2_X1_5_Weights,
    ShuffleNet_V2_X2_0_Weights,
)
19
from .utils import _fuse_modules, _replace_relu, quantize_model
20

21

22
__all__ = [
23
    "QuantizableShuffleNetV2",
24
25
    "ShuffleNet_V2_X0_5_QuantizedWeights",
    "ShuffleNet_V2_X1_0_QuantizedWeights",
26
27
    "ShuffleNet_V2_X1_5_QuantizedWeights",
    "ShuffleNet_V2_X2_0_QuantizedWeights",
28
29
    "shufflenet_v2_x0_5",
    "shufflenet_v2_x1_0",
30
31
    "shufflenet_v2_x1_5",
    "shufflenet_v2_x2_0",
32
33
34
35
]


class QuantizableInvertedResidual(shufflenetv2.InvertedResidual):
36
    def __init__(self, *args: Any, **kwargs: Any) -> None:
37
        super().__init__(*args, **kwargs)
38
39
        self.cat = nn.quantized.FloatFunctional()

40
    def forward(self, x: Tensor) -> Tensor:
41
42
        if self.stride == 1:
            x1, x2 = x.chunk(2, dim=1)
43
            out = self.cat.cat([x1, self.branch2(x2)], dim=1)
44
        else:
45
            out = self.cat.cat([self.branch1(x), self.branch2(x)], dim=1)
46
47
48
49
50
51
52

        out = shufflenetv2.channel_shuffle(out, 2)

        return out


class QuantizableShuffleNetV2(shufflenetv2.ShuffleNetV2):
53
54
    # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659
    def __init__(self, *args: Any, **kwargs: Any) -> None:
55
        super().__init__(*args, inverted_residual=QuantizableInvertedResidual, **kwargs)  # type: ignore[misc]
56
57
        self.quant = torch.ao.quantization.QuantStub()
        self.dequant = torch.ao.quantization.DeQuantStub()
58

59
    def forward(self, x: Tensor) -> Tensor:
60
        x = self.quant(x)
61
        x = self._forward_impl(x)
62
63
64
        x = self.dequant(x)
        return x

65
    def fuse_model(self, is_qat: Optional[bool] = None) -> None:
66
67
68
69
70
71
72
        r"""Fuse conv/bn/relu modules in shufflenetv2 model

        Fuse conv+bn+relu/ conv+relu/conv+bn modules to prepare for quantization.
        Model is modified in place.  Note that this operation does not change numerics
        and the model after modification is in floating point
        """
        for name, m in self._modules.items():
73
74
            if name in ["conv1", "conv5"] and m is not None:
                _fuse_modules(m, [["0", "1", "2"]], is_qat, inplace=True)
75
        for m in self.modules():
76
            if type(m) is QuantizableInvertedResidual:
77
                if len(m.branch1._modules.items()) > 0:
78
79
                    _fuse_modules(m.branch1, [["0", "1"], ["2", "3", "4"]], is_qat, inplace=True)
                _fuse_modules(
80
81
                    m.branch2,
                    [["0", "1", "2"], ["3", "4"], ["5", "6", "7"]],
82
                    is_qat,
83
84
85
86
                    inplace=True,
                )


87
def _shufflenetv2(
88
89
90
91
    stages_repeats: List[int],
    stages_out_channels: List[int],
    *,
    weights: Optional[WeightsEnum],
92
93
94
95
    progress: bool,
    quantize: bool,
    **kwargs: Any,
) -> QuantizableShuffleNetV2:
96
97
98
99
100
    if weights is not None:
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
        if "backend" in weights.meta:
            _ovewrite_named_param(kwargs, "backend", weights.meta["backend"])
    backend = kwargs.pop("backend", "fbgemm")
101

102
    model = QuantizableShuffleNetV2(stages_repeats, stages_out_channels, **kwargs)
103
104
105
106
    _replace_relu(model)
    if quantize:
        quantize_model(model, backend)

107
108
    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))
109
110
111
112

    return model


113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
_COMMON_META = {
    "min_size": (1, 1),
    "categories": _IMAGENET_CATEGORIES,
    "backend": "fbgemm",
    "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#post-training-quantized-models",
}


class ShuffleNet_V2_X0_5_QuantizedWeights(WeightsEnum):
    IMAGENET1K_FBGEMM_V1 = Weights(
        url="https://download.pytorch.org/models/quantized/shufflenetv2_x0.5_fbgemm-00845098.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 1366792,
            "unquantized": ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1,
129
130
131
132
            "metrics": {
                "acc@1": 57.972,
                "acc@5": 79.780,
            },
133
134
135
136
137
138
139
140
141
142
143
144
145
        },
    )
    DEFAULT = IMAGENET1K_FBGEMM_V1


class ShuffleNet_V2_X1_0_QuantizedWeights(WeightsEnum):
    IMAGENET1K_FBGEMM_V1 = Weights(
        url="https://download.pytorch.org/models/quantized/shufflenetv2_x1_fbgemm-db332c57.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 2278604,
            "unquantized": ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1,
146
147
148
149
            "metrics": {
                "acc@1": 68.360,
                "acc@5": 87.582,
            },
150
151
152
153
154
        },
    )
    DEFAULT = IMAGENET1K_FBGEMM_V1


155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
class ShuffleNet_V2_X1_5_QuantizedWeights(WeightsEnum):
    IMAGENET1K_FBGEMM_V1 = Weights(
        url="https://download.pytorch.org/models/quantized/shufflenetv2_x1_5_fbgemm-d7401f05.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "recipe": "https://github.com/pytorch/vision/pull/5906",
            "num_params": 3503624,
            "unquantized": ShuffleNet_V2_X1_5_Weights.IMAGENET1K_V1,
            "metrics": {
                "acc@1": 72.052,
                "acc@5": 90.700,
            },
        },
    )
    DEFAULT = IMAGENET1K_FBGEMM_V1


class ShuffleNet_V2_X2_0_QuantizedWeights(WeightsEnum):
    IMAGENET1K_FBGEMM_V1 = Weights(
        url="https://download.pytorch.org/models/quantized/shufflenetv2_x2_0_fbgemm-5cac526c.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "recipe": "https://github.com/pytorch/vision/pull/5906",
            "num_params": 7393996,
            "unquantized": ShuffleNet_V2_X2_0_Weights.IMAGENET1K_V1,
            "metrics": {
                "acc@1": 75.354,
                "acc@5": 92.488,
            },
        },
    )
    DEFAULT = IMAGENET1K_FBGEMM_V1


191
192
193
194
195
196
197
198
@handle_legacy_interface(
    weights=(
        "pretrained",
        lambda kwargs: ShuffleNet_V2_X0_5_QuantizedWeights.IMAGENET1K_FBGEMM_V1
        if kwargs.get("quantize", False)
        else ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1,
    )
)
199
def shufflenet_v2_x0_5(
200
201
    *,
    weights: Optional[Union[ShuffleNet_V2_X0_5_QuantizedWeights, ShuffleNet_V2_X0_5_Weights]] = None,
202
203
204
205
    progress: bool = True,
    quantize: bool = False,
    **kwargs: Any,
) -> QuantizableShuffleNetV2:
206
207
208
209
210
    """
    Constructs a ShuffleNetV2 with 0.5x output channels, as described in
    `"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design"
    <https://arxiv.org/abs/1807.11164>`_.

211
212
213
214
215
    .. note::
        Note that ``quantize = True`` returns a quantized model with 8 bit
        weights. Quantized models only support inference and run on CPUs.
        GPU inference is not yet supported.

216
    Args:
217
218
        weights (ShuffleNet_V2_X0_5_QuantizedWeights or ShuffleNet_V2_X0_5_Weights, optional): The pretrained
            weights for the model
219
        progress (bool): If True, displays a progress bar of the download to stderr
220
        quantize (bool): If True, return a quantized version of the model
221
    """
222
    weights = (ShuffleNet_V2_X0_5_QuantizedWeights if quantize else ShuffleNet_V2_X0_5_Weights).verify(weights)
223
    return _shufflenetv2(
224
        [4, 8, 4], [24, 48, 96, 192, 1024], weights=weights, progress=progress, quantize=quantize, **kwargs
225
    )
226
227


228
229
230
231
232
233
234
235
@handle_legacy_interface(
    weights=(
        "pretrained",
        lambda kwargs: ShuffleNet_V2_X1_0_QuantizedWeights.IMAGENET1K_FBGEMM_V1
        if kwargs.get("quantize", False)
        else ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1,
    )
)
236
def shufflenet_v2_x1_0(
237
238
    *,
    weights: Optional[Union[ShuffleNet_V2_X1_0_QuantizedWeights, ShuffleNet_V2_X1_0_Weights]] = None,
239
240
241
242
    progress: bool = True,
    quantize: bool = False,
    **kwargs: Any,
) -> QuantizableShuffleNetV2:
243
244
245
246
247
    """
    Constructs a ShuffleNetV2 with 1.0x output channels, as described in
    `"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design"
    <https://arxiv.org/abs/1807.11164>`_.

248
249
250
251
252
    .. note::
        Note that ``quantize = True`` returns a quantized model with 8 bit
        weights. Quantized models only support inference and run on CPUs.
        GPU inference is not yet supported.

253
    Args:
254
255
        weights (ShuffleNet_V2_X1_0_QuantizedWeights or ShuffleNet_V2_X1_0_Weights, optional): The pretrained
            weights for the model
256
        progress (bool): If True, displays a progress bar of the download to stderr
257
        quantize (bool): If True, return a quantized version of the model
258
    """
259
    weights = (ShuffleNet_V2_X1_0_QuantizedWeights if quantize else ShuffleNet_V2_X1_0_Weights).verify(weights)
260
    return _shufflenetv2(
261
        [4, 8, 4], [24, 116, 232, 464, 1024], weights=weights, progress=progress, quantize=quantize, **kwargs
262
    )
263
264
265
266
267
268
269
270
271
272
273
274
275
276


def shufflenet_v2_x1_5(
    *,
    weights: Optional[Union[ShuffleNet_V2_X1_5_QuantizedWeights, ShuffleNet_V2_X1_5_Weights]] = None,
    progress: bool = True,
    quantize: bool = False,
    **kwargs: Any,
) -> QuantizableShuffleNetV2:
    """
    Constructs a ShuffleNetV2 with 1.5x output channels, as described in
    `"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design"
    <https://arxiv.org/abs/1807.11164>`_.

277
278
279
280
281
    .. note::
        Note that ``quantize = True`` returns a quantized model with 8 bit
        weights. Quantized models only support inference and run on CPUs.
        GPU inference is not yet supported.

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
    Args:
        weights (ShuffleNet_V2_X1_5_QuantizedWeights or ShuffleNet_V2_X1_5_Weights, optional): The pretrained
            weights for the model
        progress (bool): If True, displays a progress bar of the download to stderr
        quantize (bool): If True, return a quantized version of the model
    """
    weights = (ShuffleNet_V2_X1_5_QuantizedWeights if quantize else ShuffleNet_V2_X1_5_Weights).verify(weights)
    return _shufflenetv2(
        [4, 8, 4], [24, 176, 352, 704, 1024], weights=weights, progress=progress, quantize=quantize, **kwargs
    )


def shufflenet_v2_x2_0(
    *,
    weights: Optional[Union[ShuffleNet_V2_X2_0_QuantizedWeights, ShuffleNet_V2_X2_0_Weights]] = None,
    progress: bool = True,
    quantize: bool = False,
    **kwargs: Any,
) -> QuantizableShuffleNetV2:
    """
    Constructs a ShuffleNetV2 with 2.0x output channels, as described in
    `"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design"
    <https://arxiv.org/abs/1807.11164>`_.

306
307
308
309
310
    .. note::
        Note that ``quantize = True`` returns a quantized model with 8 bit
        weights. Quantized models only support inference and run on CPUs.
        GPU inference is not yet supported.

311
312
313
314
315
316
317
318
319
320
    Args:
        weights (ShuffleNet_V2_X2_0_QuantizedWeights or ShuffleNet_V2_X2_0_Weights, optional): The pretrained
            weights for the model
        progress (bool): If True, displays a progress bar of the download to stderr
        quantize (bool): If True, return a quantized version of the model
    """
    weights = (ShuffleNet_V2_X2_0_QuantizedWeights if quantize else ShuffleNet_V2_X2_0_Weights).verify(weights)
    return _shufflenetv2(
        [4, 8, 4], [24, 244, 488, 976, 2048], weights=weights, progress=progress, quantize=quantize, **kwargs
    )
321
322
323
324
325
326
327
328
329
330
331
332
333


# The dictionary below is internal implementation detail and will be removed in v0.15
from .._utils import _ModelURLs
from ..shufflenetv2 import model_urls  # noqa: F401


quant_model_urls = _ModelURLs(
    {
        "shufflenetv2_x0.5_fbgemm": ShuffleNet_V2_X0_5_QuantizedWeights.IMAGENET1K_FBGEMM_V1.url,
        "shufflenetv2_x1.0_fbgemm": ShuffleNet_V2_X1_0_QuantizedWeights.IMAGENET1K_FBGEMM_V1.url,
    }
)