common_utils.py 5.86 KB
Newer Older
1
import os
2
import tempfile
3
import unittest
moto's avatar
moto committed
4
from typing import Type, Iterable, Union
5
6
from contextlib import contextmanager
from shutil import copytree
7

jamarshon's avatar
jamarshon committed
8
import torch
9
from torch.testing._internal.common_utils import TestCase
10
import torchaudio
11

12
_TEST_DIR_PATH = os.path.dirname(os.path.realpath(__file__))
13
BACKENDS = torchaudio.list_audio_backends()
14
15


16
17
18
19
20
def get_asset_path(*paths):
    """Return full path of a test asset"""
    return os.path.join(_TEST_DIR_PATH, 'assets', *paths)


21
22
23
24
25
26
27
def create_temp_assets_dir():
    """
    Creates a temporary directory and moves all files from test/assets there.
    Returns a Tuple[string, TemporaryDirectory] which is the folder path
    and object.
    """
    tmp_dir = tempfile.TemporaryDirectory()
28
    copytree(os.path.join(_TEST_DIR_PATH, "assets"),
29
30
             os.path.join(tmp_dir.name, "assets"))
    return tmp_dir.name, tmp_dir
jamarshon's avatar
jamarshon committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57


def random_float_tensor(seed, size, a=22695477, c=1, m=2 ** 32):
    """ Generates random tensors given a seed and size
    https://en.wikipedia.org/wiki/Linear_congruential_generator
    X_{n + 1} = (a * X_n + c) % m
    Using Borland C/C++ values

    The tensor will have values between [0,1)
    Inputs:
        seed (int): an int
        size (Tuple[int]): the size of the output tensor
        a (int): the multiplier constant to the generator
        c (int): the additive constant to the generator
        m (int): the modulus constant to the generator
    """
    num_elements = 1
    for s in size:
        num_elements *= s

    arr = [(a * seed + c) % m]
    for i in range(num_elements - 1):
        arr.append((a * arr[i] + c) % m)

    return torch.tensor(arr).float().view(size) / m


58
59
60
61
62
63
64
65
66
67
68
69
@contextmanager
def AudioBackendScope(new_backend):
    previous_backend = torchaudio.get_audio_backend()
    try:
        torchaudio.set_audio_backend(new_backend)
        yield
    finally:
        torchaudio.set_audio_backend(previous_backend)


def filter_backends_with_mp3(backends):
    # Filter out backends that do not support mp3
70
    test_filepath = get_asset_path('steam-train-whistle-daniel_simon.mp3')
71
72
73
74
75
76

    def supports_mp3(backend):
        try:
            with AudioBackendScope(backend):
                torchaudio.load(test_filepath)
            return True
moto's avatar
moto committed
77
        except (RuntimeError, ImportError):
78
79
80
81
82
83
            return False

    return [backend for backend in backends if supports_mp3(backend)]


BACKENDS_MP3 = filter_backends_with_mp3(BACKENDS)
84
85
86
87
88
89
90


class TestBaseMixin:
    dtype = None
    device = None


91
92
93
_SKIP_IF_NO_CUDA = unittest.skipIf(not torch.cuda.is_available(), reason='CUDA not available')


94
95
96
97
98
99
100
101
def define_test_suite(testbase: Type[TestBaseMixin], dtype: str, device: str):
    if dtype not in ['float32', 'float64']:
        raise NotImplementedError(f'Unexpected dtype: {dtype}')
    if device not in ['cpu', 'cuda']:
        raise NotImplementedError(f'Unexpected device: {device}')

    name = f'Test{testbase.__name__}_{device.upper()}_{dtype.capitalize()}'
    attrs = {'dtype': getattr(torch, dtype), 'device': torch.device(device)}
102
    testsuite = type(name, (testbase, TestCase), attrs)
103
104

    if device == 'cuda':
105
        testsuite = _SKIP_IF_NO_CUDA(testsuite)
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    return testsuite


def define_test_suites(
        scope: dict,
        testbases: Iterable[Type[TestBaseMixin]],
        dtypes: Iterable[str] = ('float32', 'float64'),
        devices: Iterable[str] = ('cpu', 'cuda'),
):
    for suite in testbases:
        for device in devices:
            for dtype in dtypes:
                t = define_test_suite(suite, dtype, device)
                scope[t.__name__] = t
moto's avatar
moto committed
120
121


122
123
124
125
126
127
128
129
130
def common_test_class_parameters(
    dtypes: Iterable[str] = ("float32", "float64"),
    devices: Iterable[str] = ("cpu", "cuda"),
):
    for device in devices:
        for dtype in dtypes:
            yield {"device": torch.device(device), "dtype": getattr(torch, dtype)}


moto's avatar
moto committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
def get_whitenoise(
    *,
    sample_rate: int = 16000,
    duration: float = 1,  # seconds
    n_channels: int = 1,
    seed: int = 0,
    dtype: Union[str, torch.dtype] = "float32",
    device: Union[str, torch.device] = "cpu",
):
    """Generate pseudo audio data with whitenoise

    Args:
        sample_rate: Sampling rate
        duration: Length of the resulting Tensor in seconds.
        n_channels: Number of channels
        seed: Seed value used for random number generation.
            Note that this function does not modify global random generator state.
        dtype: Torch dtype
        device: device
    Returns:
        Tensor: shape of (n_channels, sample_rate * duration)
    """
    if isinstance(dtype, str):
        dtype = getattr(torch, dtype)
    shape = [n_channels, sample_rate * duration]
    # According to the doc, folking rng on all CUDA devices is slow when there are many CUDA devices,
    # so we only folk on CPU, generate values and move the data to the given device
    with torch.random.fork_rng([]):
        torch.random.manual_seed(seed)
        tensor = torch.randn(shape, dtype=dtype, device='cpu')
    tensor /= 2.0
    tensor.clamp_(-1.0, 1.0)
    return tensor.to(device=device)


def get_sinusoid(
    *,
    frequency: float = 300,
    sample_rate: int = 16000,
    duration: float = 1,  # seconds
    n_channels: int = 1,
    dtype: Union[str, torch.dtype] = "float32",
    device: Union[str, torch.device] = "cpu",
):
    """Generate pseudo audio data with sine wave.

    Args:
        frequency: Frequency of sine wave
        sample_rate: Sampling rate
        duration: Length of the resulting Tensor in seconds.
        n_channels: Number of channels
        dtype: Torch dtype
        device: device

    Returns:
        Tensor: shape of (n_channels, sample_rate * duration)
    """
    if isinstance(dtype, str):
        dtype = getattr(torch, dtype)
    pie2 = 2 * 3.141592653589793
    end = pie2 * frequency * duration
    theta = torch.linspace(0, end, sample_rate * duration, dtype=dtype, device=device)
    return torch.sin(theta, out=None).repeat([n_channels, 1])