Unverified Commit 2c28b743 authored by moto's avatar moto Committed by GitHub
Browse files

Adopt PyTorch's test util to torchscript test (#640)

parent 995b75f8
import os import os
import tempfile import tempfile
import unittest
from typing import Type, Iterable from typing import Type, Iterable
from contextlib import contextmanager from contextlib import contextmanager
from shutil import copytree from shutil import copytree
import torch import torch
from torch.testing._internal.common_utils import TestCase
import torchaudio import torchaudio
import pytest
_TEST_DIR_PATH = os.path.dirname(os.path.realpath(__file__)) _TEST_DIR_PATH = os.path.dirname(os.path.realpath(__file__))
BACKENDS = torchaudio._backend._audio_backends BACKENDS = torchaudio._backend._audio_backends
...@@ -87,6 +88,9 @@ class TestBaseMixin: ...@@ -87,6 +88,9 @@ class TestBaseMixin:
device = None device = None
_SKIP_IF_NO_CUDA = unittest.skipIf(not torch.cuda.is_available(), reason='CUDA not available')
def define_test_suite(testbase: Type[TestBaseMixin], dtype: str, device: str): def define_test_suite(testbase: Type[TestBaseMixin], dtype: str, device: str):
if dtype not in ['float32', 'float64']: if dtype not in ['float32', 'float64']:
raise NotImplementedError(f'Unexpected dtype: {dtype}') raise NotImplementedError(f'Unexpected dtype: {dtype}')
...@@ -95,11 +99,10 @@ def define_test_suite(testbase: Type[TestBaseMixin], dtype: str, device: str): ...@@ -95,11 +99,10 @@ def define_test_suite(testbase: Type[TestBaseMixin], dtype: str, device: str):
name = f'Test{testbase.__name__}_{device.upper()}_{dtype.capitalize()}' name = f'Test{testbase.__name__}_{device.upper()}_{dtype.capitalize()}'
attrs = {'dtype': getattr(torch, dtype), 'device': torch.device(device)} attrs = {'dtype': getattr(torch, dtype), 'device': torch.device(device)}
testsuite = type(name, (testbase,), attrs) testsuite = type(name, (testbase, TestCase), attrs)
if device == 'cuda': if device == 'cuda':
testsuite = pytest.mark.skipif( testsuite = _SKIP_IF_NO_CUDA(testsuite)
not torch.cuda.is_available(), reason='CUDA not available')(testsuite)
return testsuite return testsuite
......
...@@ -23,7 +23,7 @@ class Lfilter(common_utils.TestBaseMixin): ...@@ -23,7 +23,7 @@ class Lfilter(common_utils.TestBaseMixin):
a_coeffs = torch.tensor([1, 0, 0, 0], dtype=self.dtype, device=self.device) a_coeffs = torch.tensor([1, 0, 0, 0], dtype=self.dtype, device=self.device)
output_waveform = F.lfilter(waveform, a_coeffs, b_coeffs) output_waveform = F.lfilter(waveform, a_coeffs, b_coeffs)
torch.testing.assert_allclose(output_waveform[:, 3:], waveform[:, 0:-3], atol=1e-5, rtol=1e-5) self.assertEqual(output_waveform[:, 3:], waveform[:, 0:-3], atol=1e-5, rtol=1e-5)
def test_clamp(self): def test_clamp(self):
input_signal = torch.ones(1, 44100 * 1, dtype=self.dtype, device=self.device) input_signal = torch.ones(1, 44100 * 1, dtype=self.dtype, device=self.device)
......
"""Test suites for jit-ability and its numerical compatibility""" """Test suites for jit-ability and its numerical compatibility"""
import unittest import unittest
import pytest
import torch import torch
import torchaudio import torchaudio
...@@ -10,29 +9,18 @@ import torchaudio.transforms as T ...@@ -10,29 +9,18 @@ import torchaudio.transforms as T
import common_utils import common_utils
def _assert_functional_consistency(func, tensor, shape_only=False):
ts_func = torch.jit.script(func)
output = func(tensor)
ts_output = ts_func(tensor)
if shape_only:
assert ts_output.shape == output.shape, (ts_output.shape, output.shape)
else:
torch.testing.assert_allclose(ts_output, output)
def _assert_transforms_consistency(transform, tensor):
ts_transform = torch.jit.script(transform)
output = transform(tensor)
ts_output = ts_transform(tensor)
torch.testing.assert_allclose(ts_output, output)
class Functional(common_utils.TestBaseMixin): class Functional(common_utils.TestBaseMixin):
"""Implements test for `functinoal` modul that are performed for different devices""" """Implements test for `functinoal` modul that are performed for different devices"""
def _assert_consistency(self, func, tensor, shape_only=False): def _assert_consistency(self, func, tensor, shape_only=False):
tensor = tensor.to(device=self.device, dtype=self.dtype) tensor = tensor.to(device=self.device, dtype=self.dtype)
return _assert_functional_consistency(func, tensor, shape_only=shape_only)
ts_func = torch.jit.script(func)
output = func(tensor)
ts_output = ts_func(tensor)
if shape_only:
ts_output = ts_output.shape
output = output.shape
self.assertEqual(ts_output, output)
def test_spectrogram(self): def test_spectrogram(self):
def func(tensor): def func(tensor):
...@@ -210,7 +198,7 @@ class Functional(common_utils.TestBaseMixin): ...@@ -210,7 +198,7 @@ class Functional(common_utils.TestBaseMixin):
def test_lfilter(self): def test_lfilter(self):
if self.dtype == torch.float64: if self.dtype == torch.float64:
pytest.xfail("This test is known to fail for float64") raise unittest.SkipTest("This test is known to fail for float64")
filepath = common_utils.get_asset_path('whitenoise.wav') filepath = common_utils.get_asset_path('whitenoise.wav')
waveform, _ = torchaudio.load(filepath, normalization=True) waveform, _ = torchaudio.load(filepath, normalization=True)
...@@ -254,7 +242,7 @@ class Functional(common_utils.TestBaseMixin): ...@@ -254,7 +242,7 @@ class Functional(common_utils.TestBaseMixin):
def test_lowpass(self): def test_lowpass(self):
if self.dtype == torch.float64: if self.dtype == torch.float64:
pytest.xfail("This test is known to fail for float64") raise unittest.SkipTest("This test is known to fail for float64")
filepath = common_utils.get_asset_path('whitenoise.wav') filepath = common_utils.get_asset_path('whitenoise.wav')
waveform, _ = torchaudio.load(filepath, normalization=True) waveform, _ = torchaudio.load(filepath, normalization=True)
...@@ -268,7 +256,7 @@ class Functional(common_utils.TestBaseMixin): ...@@ -268,7 +256,7 @@ class Functional(common_utils.TestBaseMixin):
def test_highpass(self): def test_highpass(self):
if self.dtype == torch.float64: if self.dtype == torch.float64:
pytest.xfail("This test is known to fail for float64") raise unittest.SkipTest("This test is known to fail for float64")
filepath = common_utils.get_asset_path('whitenoise.wav') filepath = common_utils.get_asset_path('whitenoise.wav')
waveform, _ = torchaudio.load(filepath, normalization=True) waveform, _ = torchaudio.load(filepath, normalization=True)
...@@ -282,7 +270,7 @@ class Functional(common_utils.TestBaseMixin): ...@@ -282,7 +270,7 @@ class Functional(common_utils.TestBaseMixin):
def test_allpass(self): def test_allpass(self):
if self.dtype == torch.float64: if self.dtype == torch.float64:
pytest.xfail("This test is known to fail for float64") raise unittest.SkipTest("This test is known to fail for float64")
filepath = common_utils.get_asset_path('whitenoise.wav') filepath = common_utils.get_asset_path('whitenoise.wav')
waveform, _ = torchaudio.load(filepath, normalization=True) waveform, _ = torchaudio.load(filepath, normalization=True)
...@@ -297,7 +285,7 @@ class Functional(common_utils.TestBaseMixin): ...@@ -297,7 +285,7 @@ class Functional(common_utils.TestBaseMixin):
def test_bandpass_with_csg(self): def test_bandpass_with_csg(self):
if self.dtype == torch.float64: if self.dtype == torch.float64:
pytest.xfail("This test is known to fail for float64") raise unittest.SkipTest("This test is known to fail for float64")
filepath = common_utils.get_asset_path("whitenoise.wav") filepath = common_utils.get_asset_path("whitenoise.wav")
waveform, _ = torchaudio.load(filepath, normalization=True) waveform, _ = torchaudio.load(filepath, normalization=True)
...@@ -313,7 +301,7 @@ class Functional(common_utils.TestBaseMixin): ...@@ -313,7 +301,7 @@ class Functional(common_utils.TestBaseMixin):
def test_bandpass_without_csg(self): def test_bandpass_without_csg(self):
if self.dtype == torch.float64: if self.dtype == torch.float64:
pytest.xfail("This test is known to fail for float64") raise unittest.SkipTest("This test is known to fail for float64")
filepath = common_utils.get_asset_path("whitenoise.wav") filepath = common_utils.get_asset_path("whitenoise.wav")
waveform, _ = torchaudio.load(filepath, normalization=True) waveform, _ = torchaudio.load(filepath, normalization=True)
...@@ -329,7 +317,7 @@ class Functional(common_utils.TestBaseMixin): ...@@ -329,7 +317,7 @@ class Functional(common_utils.TestBaseMixin):
def test_bandreject(self): def test_bandreject(self):
if self.dtype == torch.float64: if self.dtype == torch.float64:
pytest.xfail("This test is known to fail for float64") raise unittest.SkipTest("This test is known to fail for float64")
filepath = common_utils.get_asset_path("whitenoise.wav") filepath = common_utils.get_asset_path("whitenoise.wav")
waveform, _ = torchaudio.load(filepath, normalization=True) waveform, _ = torchaudio.load(filepath, normalization=True)
...@@ -344,7 +332,7 @@ class Functional(common_utils.TestBaseMixin): ...@@ -344,7 +332,7 @@ class Functional(common_utils.TestBaseMixin):
def test_band_with_noise(self): def test_band_with_noise(self):
if self.dtype == torch.float64: if self.dtype == torch.float64:
pytest.xfail("This test is known to fail for float64") raise unittest.SkipTest("This test is known to fail for float64")
filepath = common_utils.get_asset_path("whitenoise.wav") filepath = common_utils.get_asset_path("whitenoise.wav")
waveform, _ = torchaudio.load(filepath, normalization=True) waveform, _ = torchaudio.load(filepath, normalization=True)
...@@ -360,7 +348,7 @@ class Functional(common_utils.TestBaseMixin): ...@@ -360,7 +348,7 @@ class Functional(common_utils.TestBaseMixin):
def test_band_without_noise(self): def test_band_without_noise(self):
if self.dtype == torch.float64: if self.dtype == torch.float64:
pytest.xfail("This test is known to fail for float64") raise unittest.SkipTest("This test is known to fail for float64")
filepath = common_utils.get_asset_path("whitenoise.wav") filepath = common_utils.get_asset_path("whitenoise.wav")
waveform, _ = torchaudio.load(filepath, normalization=True) waveform, _ = torchaudio.load(filepath, normalization=True)
...@@ -376,7 +364,7 @@ class Functional(common_utils.TestBaseMixin): ...@@ -376,7 +364,7 @@ class Functional(common_utils.TestBaseMixin):
def test_treble(self): def test_treble(self):
if self.dtype == torch.float64: if self.dtype == torch.float64:
pytest.xfail("This test is known to fail for float64") raise unittest.SkipTest("This test is known to fail for float64")
filepath = common_utils.get_asset_path("whitenoise.wav") filepath = common_utils.get_asset_path("whitenoise.wav")
waveform, _ = torchaudio.load(filepath, normalization=True) waveform, _ = torchaudio.load(filepath, normalization=True)
...@@ -392,7 +380,7 @@ class Functional(common_utils.TestBaseMixin): ...@@ -392,7 +380,7 @@ class Functional(common_utils.TestBaseMixin):
def test_deemph(self): def test_deemph(self):
if self.dtype == torch.float64: if self.dtype == torch.float64:
pytest.xfail("This test is known to fail for float64") raise unittest.SkipTest("This test is known to fail for float64")
filepath = common_utils.get_asset_path("whitenoise.wav") filepath = common_utils.get_asset_path("whitenoise.wav")
waveform, _ = torchaudio.load(filepath, normalization=True) waveform, _ = torchaudio.load(filepath, normalization=True)
...@@ -405,7 +393,7 @@ class Functional(common_utils.TestBaseMixin): ...@@ -405,7 +393,7 @@ class Functional(common_utils.TestBaseMixin):
def test_riaa(self): def test_riaa(self):
if self.dtype == torch.float64: if self.dtype == torch.float64:
pytest.xfail("This test is known to fail for float64") raise unittest.SkipTest("This test is known to fail for float64")
filepath = common_utils.get_asset_path("whitenoise.wav") filepath = common_utils.get_asset_path("whitenoise.wav")
waveform, _ = torchaudio.load(filepath, normalization=True) waveform, _ = torchaudio.load(filepath, normalization=True)
...@@ -418,7 +406,7 @@ class Functional(common_utils.TestBaseMixin): ...@@ -418,7 +406,7 @@ class Functional(common_utils.TestBaseMixin):
def test_equalizer(self): def test_equalizer(self):
if self.dtype == torch.float64: if self.dtype == torch.float64:
pytest.xfail("This test is known to fail for float64") raise unittest.SkipTest("This test is known to fail for float64")
filepath = common_utils.get_asset_path("whitenoise.wav") filepath = common_utils.get_asset_path("whitenoise.wav")
waveform, _ = torchaudio.load(filepath, normalization=True) waveform, _ = torchaudio.load(filepath, normalization=True)
...@@ -434,7 +422,7 @@ class Functional(common_utils.TestBaseMixin): ...@@ -434,7 +422,7 @@ class Functional(common_utils.TestBaseMixin):
def test_perf_biquad_filtering(self): def test_perf_biquad_filtering(self):
if self.dtype == torch.float64: if self.dtype == torch.float64:
pytest.xfail("This test is known to fail for float64") raise unittest.SkipTest("This test is known to fail for float64")
filepath = common_utils.get_asset_path("whitenoise.wav") filepath = common_utils.get_asset_path("whitenoise.wav")
waveform, _ = torchaudio.load(filepath, normalization=True) waveform, _ = torchaudio.load(filepath, normalization=True)
...@@ -515,7 +503,7 @@ class Functional(common_utils.TestBaseMixin): ...@@ -515,7 +503,7 @@ class Functional(common_utils.TestBaseMixin):
def test_phaser(self): def test_phaser(self):
filepath = common_utils.get_asset_path("whitenoise.wav") filepath = common_utils.get_asset_path("whitenoise.wav")
waveform, sample_rate = torchaudio.load(filepath, normalization=True) waveform, _ = torchaudio.load(filepath, normalization=True)
def func(tensor): def func(tensor):
gain_in = 0.5 gain_in = 0.5
...@@ -534,7 +522,11 @@ class Transforms(common_utils.TestBaseMixin): ...@@ -534,7 +522,11 @@ class Transforms(common_utils.TestBaseMixin):
def _assert_consistency(self, transform, tensor): def _assert_consistency(self, transform, tensor):
tensor = tensor.to(device=self.device, dtype=self.dtype) tensor = tensor.to(device=self.device, dtype=self.dtype)
transform = transform.to(device=self.device, dtype=self.dtype) transform = transform.to(device=self.device, dtype=self.dtype)
_assert_transforms_consistency(transform, tensor)
ts_transform = torch.jit.script(transform)
output = transform(tensor)
ts_output = ts_transform(tensor)
self.assertEqual(ts_output, output)
def test_Spectrogram(self): def test_Spectrogram(self):
tensor = torch.rand((1, 1000)) tensor = torch.rand((1, 1000))
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment