online_asr_tutorial.py 8.44 KB
Newer Older
1
2
3
4
"""
Online ASR with Emformer RNN-T
==============================

5
**Author**: `Jeff Hwang <jeffhwang@meta.com>`__, `Moto Hira <moto@meta.com>`__
6
7
8
9
10
11
12
13

This tutorial shows how to use Emformer RNN-T and streaming API
to perform online speech recognition.

"""

######################################################################
#
14
# .. note::
15
#
16
#    This tutorial requires FFmpeg libraries and SentencePiece.
17
#
18
19
#    Please refer to :ref:`Optional Dependencies <optional_dependencies>`
#    for the detail.
20
21
#

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
######################################################################
# 1. Overview
# -----------
#
# Performing online speech recognition is composed of the following steps
#
# 1. Build the inference pipeline
#    Emformer RNN-T is composed of three components: feature extractor,
#    decoder and token processor.
# 2. Format the waveform into chunks of expected sizes.
# 3. Pass data through the pipeline.

######################################################################
# 2. Preparation
# --------------
#

39
40
41
import torch
import torchaudio

42
43
44
45
print(torch.__version__)
print(torchaudio.__version__)

import IPython
46
import matplotlib.pyplot as plt
moto's avatar
moto committed
47
from torchaudio.io import StreamReader
48
49
50
51
52
53

######################################################################
# 3. Construct the pipeline
# -------------------------
#
# Pre-trained model weights and related pipeline components are
54
# bundled as :py:class:`torchaudio.pipelines.RNNTBundle`.
55
#
56
# We use :py:data:`torchaudio.pipelines.EMFORMER_RNNT_BASE_LIBRISPEECH`,
57
58
59
60
61
62
63
64
65
66
67
# which is a Emformer RNN-T model trained on LibriSpeech dataset.
#

bundle = torchaudio.pipelines.EMFORMER_RNNT_BASE_LIBRISPEECH

feature_extractor = bundle.get_streaming_feature_extractor()
decoder = bundle.get_decoder()
token_processor = bundle.get_token_processor()

######################################################################
# Streaming inference works on input data with overlap.
moto's avatar
moto committed
68
69
70
71
72
# Emformer RNN-T model treats the newest portion of the input data
# as the "right context" — a preview of future context.
# In each inference call, the model expects the main segment
# to start from this right context from the previous inference call.
# The following figure illustrates this.
73
74
75
76
77
78
79
80
#
# .. image:: https://download.pytorch.org/torchaudio/tutorial-assets/emformer_rnnt_context.png
#
# The size of main segment and right context, along with
# the expected sample rate can be retrieved from bundle.
#

sample_rate = bundle.sample_rate
81
82
segment_length = bundle.segment_length * bundle.hop_length
context_length = bundle.right_context_length * bundle.hop_length
83
84

print(f"Sample rate: {sample_rate}")
85
86
print(f"Main segment: {segment_length} frames ({segment_length / sample_rate} seconds)")
print(f"Right context: {context_length} frames ({context_length / sample_rate} seconds)")
87
88
89
90
91

######################################################################
# 4. Configure the audio stream
# -----------------------------
#
92
# Next, we configure the input audio stream using :py:class:`torchaudio.io.StreamReader`.
93
94
#
# For the detail of this API, please refer to the
moto's avatar
moto committed
95
# `StreamReader Basic Usage <./streamreader_basic_tutorial.html>`__.
96
97
98
99
100
101
102
103
104
105
106
107
#

######################################################################
# The following audio file was originally published by LibriVox project,
# and it is in the public domain.
#
# https://librivox.org/great-pirate-stories-by-joseph-lewis-french/
#
# It was re-uploaded for the sake of the tutorial.
#
src = "https://download.pytorch.org/torchaudio/tutorial-assets/greatpiratestories_00_various.mp3"

108
streamer = StreamReader(src)
109
streamer.add_basic_audio_stream(frames_per_chunk=segment_length, sample_rate=bundle.sample_rate)
110
111
112
113
114

print(streamer.get_src_stream_info(0))
print(streamer.get_out_stream_info(0))

######################################################################
moto's avatar
moto committed
115
116
117
118
119
120
121
122
123
# As previously explained, Emformer RNN-T model expects input data with
# overlaps; however, `Streamer` iterates the source media without overlap,
# so we make a helper structure that caches a part of input data from
# `Streamer` as right context and then appends it to the next input data from
# `Streamer`.
#
# The following figure illustrates this.
#
# .. image:: https://download.pytorch.org/torchaudio/tutorial-assets/emformer_rnnt_streamer_context.png
124
125
126
127
#


class ContextCacher:
moto's avatar
moto committed
128
    """Cache the end of input data and prepend the next input data with it.
129
130

    Args:
131
132
133
        segment_length (int): The size of main segment.
            If the incoming segment is shorter, then the segment is padded.
        context_length (int): The size of the context, cached and appended.
134
135
    """

136
137
138
139
    def __init__(self, segment_length: int, context_length: int):
        self.segment_length = segment_length
        self.context_length = context_length
        self.context = torch.zeros([context_length])
140
141

    def __call__(self, chunk: torch.Tensor):
142
143
144
145
        if chunk.size(0) < self.segment_length:
            chunk = torch.nn.functional.pad(chunk, (0, self.segment_length - chunk.size(0)))
        chunk_with_context = torch.cat((self.context, chunk))
        self.context = chunk[-self.context_length :]
146
147
148
149
150
151
152
153
154
155
156
157
158
159
        return chunk_with_context


######################################################################
# 5. Run stream inference
# -----------------------
#
# Finally, we run the recognition.
#
# First, we initialize the stream iterator, context cacher, and
# state and hypothesis that are used by decoder to carry over the
# decoding state between inference calls.
#

160
cacher = ContextCacher(segment_length, context_length)
161
162
163
164
165
166
167
168
169
170
171

state, hypothesis = None, None

######################################################################
# Next we, run the inference.
#
# For the sake of better display, we create a helper function which
# processes the source stream up to the given times and call it
# repeatedly.
#

moto's avatar
moto committed
172
173
stream_iterator = streamer.stream()

174

175
176
177
178
179
180
def _plot(feats, num_iter, unit=25):
    unit_dur = segment_length / sample_rate * unit
    num_plots = num_iter // unit + (1 if num_iter % unit else 0)
    fig, axes = plt.subplots(num_plots, 1)
    t0 = 0
    for i, ax in enumerate(axes):
moto's avatar
moto committed
181
        feats_ = feats[i * unit : (i + 1) * unit]
182
183
184
        t1 = t0 + segment_length / sample_rate * len(feats_)
        feats_ = torch.cat([f[2:-2] for f in feats_])  # remove boundary effect and overlap
        ax.imshow(feats_.T, extent=[t0, t1, 0, 1], aspect="auto", origin="lower")
moto's avatar
moto committed
185
        ax.tick_params(which="both", left=False, labelleft=False)
186
187
188
189
190
191
        ax.set_xlim(t0, t0 + unit_dur)
        t0 = t1
    fig.suptitle("MelSpectrogram Feature")
    plt.tight_layout()


192
@torch.inference_mode()
193
def run_inference(num_iter=100):
194
195
    global state, hypothesis
    chunks = []
196
    feats = []
moto's avatar
moto committed
197
    for i, (chunk,) in enumerate(stream_iterator, start=1):
198
        segment = cacher(chunk[:, 0])
199
200
        features, length = feature_extractor(segment)
        hypos, state = decoder.infer(features, length, 10, state=state, hypothesis=hypothesis)
201
202
203
        hypothesis = hypos
        transcript = token_processor(hypos[0][0], lstrip=False)
        print(transcript, end="\r", flush=True)
204
205

        chunks.append(chunk)
206
        feats.append(features)
207
208
209
        if i == num_iter:
            break

210
211
    # Plot the features
    _plot(feats, num_iter)
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
    return IPython.display.Audio(torch.cat(chunks).T.numpy(), rate=bundle.sample_rate)


######################################################################
#

run_inference()

######################################################################
#

run_inference()

######################################################################
#

run_inference()

######################################################################
#

run_inference()

######################################################################
#

run_inference()

######################################################################
#

run_inference()

######################################################################
#

run_inference()
249

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
######################################################################
#

run_inference()

######################################################################
#

run_inference()

######################################################################
#

run_inference()

######################################################################
#

run_inference()

######################################################################
#

run_inference()

######################################################################
#

run_inference()

280
281
282
######################################################################
#
# Tag: :obj:`torchaudio.io`