Commit b076abd1 authored by moto's avatar moto Committed by Facebook GitHub Bot
Browse files

Tweak tutorials (#2733)

Summary:
* Port downstream change https://github.com/pytorch/tutorials/pull/2060
* Fix inter-tutorial links and references

Pull Request resolved: https://github.com/pytorch/audio/pull/2733

Reviewed By: hwangjeff

Differential Revision: D40086902

Pulled By: hwangjeff

fbshipit-source-id: 00b04c6a1b68fb9fadd52b610b26ecaab15d52d8
parent fda00bf7
......@@ -123,6 +123,7 @@ sphinx_gallery_conf = {
],
**_get_pattern(),
"backreferences_dir": "gen_modules/backreferences",
"promote_jupyter_magic": True,
"first_notebook_cell": None,
"doc_module": ("torchaudio",),
}
......
......@@ -36,7 +36,7 @@ on laptop.
#
# For the basic usage of the streaming API and Emformer RNN-T
# please refer to
# `Media Stream API tutorial <./streaming_api_tutorial.html>`__ and
# `StreamReader Basic Usage <./streamreader_basic_tutorial.html>`__ and
# `Online ASR with Emformer RNN-T <./online_asr_tutorial.html>`__.
#
......
......@@ -115,7 +115,7 @@ print(f"Right context: {context_length} frames ({context_length / sample_rate} s
# Next, we configure the input audio stream using :py:class:`torchaudio.io.StreamReader`.
#
# For the detail of this API, please refer to the
# `Media Stream API tutorial <./streaming_api_tutorial.html>`__.
# `StreamReader Basic Usage <./streamreader_basic_tutorial.html>`__.
#
######################################################################
......
......@@ -3,7 +3,7 @@ StreamReader Advanced Usages
============================
This tutorial is the continuation of
`StreamReader Basic Usages <./streaming_api_tutorial.html>`__.
`StreamReader Basic Usages <./streamreader_basic_tutorial.html>`__.
This shows how to use :py:class:`~torchaudio.io.StreamReader` for
......
......@@ -105,7 +105,7 @@ VIDEO_URL = f"{base_url}/stream-api/NASAs_Most_Scientifically_Complex_Space_Obse
#
# The following section covers how to open common media formats.
# For the other streams, please refer to the
# `Media Stream API - Pt.2 <./streaming_api2_tutorial.html>`__.
# `StreamReader Advanced Usage <./streamreader_advanced_tutorial.html>`__.
#
# .. note::
#
......
......@@ -35,9 +35,8 @@ import matplotlib.pyplot as plt
# The last step is converting the spectrogram into the waveform. The
# process to generate speech from spectrogram is also called Vocoder.
# In this tutorial, three different vocoders are used,
# `WaveRNN <https://pytorch.org/audio/stable/models/wavernn.html>`__,
# `Griffin-Lim <https://pytorch.org/audio/stable/transforms.html#griffinlim>`__,
# and
# :py:class:`~torchaudio.models.WaveRNN`,
# :py:class:`~torchaudio.transforms.GriffinLim`, and
# `Nvidia's WaveGlow <https://pytorch.org/hub/nvidia_deeplearningexamples_tacotron2/>`__.
#
#
......@@ -57,8 +56,11 @@ import matplotlib.pyplot as plt
# encoding.
#
# When running this example in notebook, install DeepPhonemizer
# !pip3 install deep_phonemizer
# %%
# .. code-block:: bash
#
# %%bash
# pip3 install deep_phonemizer
import torch
import torchaudio
......@@ -216,7 +218,7 @@ with torch.inference_mode():
spec, _, _ = tacotron2.infer(processed, lengths)
plt.imshow(spec[0].cpu().detach())
_ = plt.imshow(spec[0].cpu().detach())
######################################################################
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment