online_asr_tutorial.py 9.12 KB
Newer Older
1
2
3
4
"""
Online ASR with Emformer RNN-T
==============================

5
**Author**: `Jeff Hwang <jeffhwang@meta.com>`__, `Moto Hira <moto@meta.com>`__
6
7
8
9
10
11
12
13

This tutorial shows how to use Emformer RNN-T and streaming API
to perform online speech recognition.

"""

######################################################################
#
14
# .. note::
15
#
16
#    This tutorial requires FFmpeg libraries (>=4.1, <4.4) and SentencePiece.
17
#
18
#    There are multiple ways to install FFmpeg libraries.
19
#    If you are using Anaconda Python distribution,
20
#    ``conda install 'ffmpeg<4.4'`` will install
21
#    the required FFmpeg libraries.
22
#
23
#    You can install SentencePiece by running ``pip install sentencepiece``.
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
######################################################################
# 1. Overview
# -----------
#
# Performing online speech recognition is composed of the following steps
#
# 1. Build the inference pipeline
#    Emformer RNN-T is composed of three components: feature extractor,
#    decoder and token processor.
# 2. Format the waveform into chunks of expected sizes.
# 3. Pass data through the pipeline.

######################################################################
# 2. Preparation
# --------------
#

42
43
44
import torch
import torchaudio

45
46
47
48
49
50
print(torch.__version__)
print(torchaudio.__version__)

######################################################################
#
import IPython
51
import matplotlib.pyplot as plt
52

53
try:
54
    from torchaudio.io import StreamReader
55
56
57
58
59
60
except ModuleNotFoundError:
    try:
        import google.colab

        print(
            """
61
62
            To enable running this notebook in Google Colab, install the requisite
            third party libraries by running the following code block:
63
64
65
66
67
68
69
70
71

            !add-apt-repository -y ppa:savoury1/ffmpeg4
            !apt-get -qq install -y ffmpeg
            """
        )
    except ModuleNotFoundError:
        pass
    raise

72
73
74
75
76
77

######################################################################
# 3. Construct the pipeline
# -------------------------
#
# Pre-trained model weights and related pipeline components are
78
# bundled as :py:class:`torchaudio.pipelines.RNNTBundle`.
79
#
80
# We use :py:data:`torchaudio.pipelines.EMFORMER_RNNT_BASE_LIBRISPEECH`,
81
82
83
84
85
86
87
88
89
90
91
# which is a Emformer RNN-T model trained on LibriSpeech dataset.
#

bundle = torchaudio.pipelines.EMFORMER_RNNT_BASE_LIBRISPEECH

feature_extractor = bundle.get_streaming_feature_extractor()
decoder = bundle.get_decoder()
token_processor = bundle.get_token_processor()

######################################################################
# Streaming inference works on input data with overlap.
moto's avatar
moto committed
92
93
94
95
96
# Emformer RNN-T model treats the newest portion of the input data
# as the "right context" — a preview of future context.
# In each inference call, the model expects the main segment
# to start from this right context from the previous inference call.
# The following figure illustrates this.
97
98
99
100
101
102
103
104
#
# .. image:: https://download.pytorch.org/torchaudio/tutorial-assets/emformer_rnnt_context.png
#
# The size of main segment and right context, along with
# the expected sample rate can be retrieved from bundle.
#

sample_rate = bundle.sample_rate
105
106
segment_length = bundle.segment_length * bundle.hop_length
context_length = bundle.right_context_length * bundle.hop_length
107
108

print(f"Sample rate: {sample_rate}")
109
110
print(f"Main segment: {segment_length} frames ({segment_length / sample_rate} seconds)")
print(f"Right context: {context_length} frames ({context_length / sample_rate} seconds)")
111
112
113
114
115

######################################################################
# 4. Configure the audio stream
# -----------------------------
#
116
# Next, we configure the input audio stream using :py:class:`torchaudio.io.StreamReader`.
117
118
#
# For the detail of this API, please refer to the
moto's avatar
moto committed
119
# `StreamReader Basic Usage <./streamreader_basic_tutorial.html>`__.
120
121
122
123
124
125
126
127
128
129
130
131
#

######################################################################
# The following audio file was originally published by LibriVox project,
# and it is in the public domain.
#
# https://librivox.org/great-pirate-stories-by-joseph-lewis-french/
#
# It was re-uploaded for the sake of the tutorial.
#
src = "https://download.pytorch.org/torchaudio/tutorial-assets/greatpiratestories_00_various.mp3"

132
streamer = StreamReader(src)
133
streamer.add_basic_audio_stream(frames_per_chunk=segment_length, sample_rate=bundle.sample_rate)
134
135
136
137
138

print(streamer.get_src_stream_info(0))
print(streamer.get_out_stream_info(0))

######################################################################
moto's avatar
moto committed
139
140
141
142
143
144
145
146
147
# As previously explained, Emformer RNN-T model expects input data with
# overlaps; however, `Streamer` iterates the source media without overlap,
# so we make a helper structure that caches a part of input data from
# `Streamer` as right context and then appends it to the next input data from
# `Streamer`.
#
# The following figure illustrates this.
#
# .. image:: https://download.pytorch.org/torchaudio/tutorial-assets/emformer_rnnt_streamer_context.png
148
149
150
151
#


class ContextCacher:
moto's avatar
moto committed
152
    """Cache the end of input data and prepend the next input data with it.
153
154

    Args:
155
156
157
        segment_length (int): The size of main segment.
            If the incoming segment is shorter, then the segment is padded.
        context_length (int): The size of the context, cached and appended.
158
159
    """

160
161
162
163
    def __init__(self, segment_length: int, context_length: int):
        self.segment_length = segment_length
        self.context_length = context_length
        self.context = torch.zeros([context_length])
164
165

    def __call__(self, chunk: torch.Tensor):
166
167
168
169
        if chunk.size(0) < self.segment_length:
            chunk = torch.nn.functional.pad(chunk, (0, self.segment_length - chunk.size(0)))
        chunk_with_context = torch.cat((self.context, chunk))
        self.context = chunk[-self.context_length :]
170
171
172
173
174
175
176
177
178
179
180
181
182
183
        return chunk_with_context


######################################################################
# 5. Run stream inference
# -----------------------
#
# Finally, we run the recognition.
#
# First, we initialize the stream iterator, context cacher, and
# state and hypothesis that are used by decoder to carry over the
# decoding state between inference calls.
#

184
cacher = ContextCacher(segment_length, context_length)
185
186
187
188
189
190
191
192
193
194
195

state, hypothesis = None, None

######################################################################
# Next we, run the inference.
#
# For the sake of better display, we create a helper function which
# processes the source stream up to the given times and call it
# repeatedly.
#

moto's avatar
moto committed
196
197
stream_iterator = streamer.stream()

198

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
def _plot(feats, num_iter, unit=25):
    unit_dur = segment_length / sample_rate * unit
    num_plots = num_iter // unit + (1 if num_iter % unit else 0)
    fig, axes = plt.subplots(num_plots, 1)
    t0 = 0
    for i, ax in enumerate(axes):
        feats_ = feats[i*unit:(i+1)*unit]
        t1 = t0 + segment_length / sample_rate * len(feats_)
        feats_ = torch.cat([f[2:-2] for f in feats_])  # remove boundary effect and overlap
        ax.imshow(feats_.T, extent=[t0, t1, 0, 1], aspect="auto", origin="lower")
        ax.tick_params(which='both', left=False, labelleft=False)
        ax.set_xlim(t0, t0 + unit_dur)
        t0 = t1
    fig.suptitle("MelSpectrogram Feature")
    plt.tight_layout()


216
@torch.inference_mode()
217
def run_inference(num_iter=100):
218
219
    global state, hypothesis
    chunks = []
220
    feats = []
moto's avatar
moto committed
221
    for i, (chunk,) in enumerate(stream_iterator, start=1):
222
        segment = cacher(chunk[:, 0])
223
224
        features, length = feature_extractor(segment)
        hypos, state = decoder.infer(features, length, 10, state=state, hypothesis=hypothesis)
225
226
227
        hypothesis = hypos
        transcript = token_processor(hypos[0][0], lstrip=False)
        print(transcript, end="\r", flush=True)
228
229

        chunks.append(chunk)
230
        feats.append(features)
231
232
233
        if i == num_iter:
            break

234
235
    # Plot the features
    _plot(feats, num_iter)
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
    return IPython.display.Audio(torch.cat(chunks).T.numpy(), rate=bundle.sample_rate)


######################################################################
#

run_inference()

######################################################################
#

run_inference()

######################################################################
#

run_inference()

######################################################################
#

run_inference()

######################################################################
#

run_inference()

######################################################################
#

run_inference()

######################################################################
#

run_inference()
273

274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
######################################################################
#

run_inference()

######################################################################
#

run_inference()

######################################################################
#

run_inference()

######################################################################
#

run_inference()

######################################################################
#

run_inference()

######################################################################
#

run_inference()

304
305
306
######################################################################
#
# Tag: :obj:`torchaudio.io`