pipelines.rst 4.67 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
torchaudio.pipelines
====================

.. currentmodule:: torchaudio.pipelines

The pipelines subpackage contains API to access the models with pretrained weights, and information/helper functions associated the pretrained weights.

wav2vec 2.0 / HuBERT - Representation Learning
----------------------------------------------

.. autoclass:: Wav2Vec2Bundle
12
   :members: sample_rate
13
14
15
16

   .. automethod:: get_model

WAV2VEC2_BASE
17
~~~~~~~~~~~~~
18
19
20
21
22
23
24

.. container:: py attribute

   .. autodata:: WAV2VEC2_BASE
      :no-value:

WAV2VEC2_LARGE
25
~~~~~~~~~~~~~~
26
27
28
29
30
31
32

.. container:: py attribute

   .. autodata:: WAV2VEC2_LARGE
      :no-value:

WAV2VEC2_LARGE_LV60K
33
~~~~~~~~~~~~~~~~~~~~
34
35
36
37
38
39
40
41

.. container:: py attribute

   .. autodata:: WAV2VEC2_LARGE_LV60K
      :no-value:


WAV2VEC2_XLSR53
42
~~~~~~~~~~~~~~~
43
44
45
46
47
48
49

.. container:: py attribute

   .. autodata:: WAV2VEC2_XLSR53
      :no-value:

HUBERT_BASE
50
~~~~~~~~~~~
51
52
53
54
55
56
57

.. container:: py attribute

   .. autodata:: HUBERT_BASE
      :no-value:

HUBERT_LARGE
58
~~~~~~~~~~~~
59
60
61
62
63
64
65

.. container:: py attribute

   .. autodata:: HUBERT_LARGE
      :no-value:

HUBERT_XLARGE
66
~~~~~~~~~~~~~
67
68
69
70
71
72

.. container:: py attribute

   .. autodata:: HUBERT_XLARGE
      :no-value:

73
74
wav2vec 2.0 / HuBERT - Fine-tuned ASR
-------------------------------------
75
76

.. autoclass:: Wav2Vec2ASRBundle
77
   :members: sample_rate
78
79
80
81
82
83
84

   .. automethod:: get_model

   .. automethod:: get_labels


WAV2VEC2_ASR_BASE_10M
85
~~~~~~~~~~~~~~~~~~~~~
86
87
88
89
90
91
92

.. container:: py attribute

   .. autodata:: WAV2VEC2_ASR_BASE_10M
      :no-value:

WAV2VEC2_ASR_BASE_100H
93
~~~~~~~~~~~~~~~~~~~~~~
94
95
96
97
98
99
100
      
.. container:: py attribute

   .. autodata:: WAV2VEC2_ASR_BASE_100H
      :no-value:

WAV2VEC2_ASR_BASE_960H
101
~~~~~~~~~~~~~~~~~~~~~~
102
103
104
105
106
107
108

.. container:: py attribute

   .. autodata:: WAV2VEC2_ASR_BASE_960H
      :no-value:

WAV2VEC2_ASR_LARGE_10M
109
~~~~~~~~~~~~~~~~~~~~~~
110
111
112
113
114
115
116

.. container:: py attribute

   .. autodata:: WAV2VEC2_ASR_LARGE_10M
      :no-value:

WAV2VEC2_ASR_LARGE_100H
117
~~~~~~~~~~~~~~~~~~~~~~~
118
119
120
121
122
123
124

.. container:: py attribute

   .. autodata:: WAV2VEC2_ASR_LARGE_100H
      :no-value:

WAV2VEC2_ASR_LARGE_960H
125
~~~~~~~~~~~~~~~~~~~~~~~
126
127
128
129
130
131
132

.. container:: py attribute

   .. autodata:: WAV2VEC2_ASR_LARGE_960H
      :no-value:

WAV2VEC2_ASR_LARGE_LV60K_10M
133
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
134
135
136
137
138
139
140

.. container:: py attribute

   .. autodata:: WAV2VEC2_ASR_LARGE_LV60K_10M
      :no-value:

WAV2VEC2_ASR_LARGE_LV60K_100H
141
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
142
143
144
145
146
147
148

.. container:: py attribute

   .. autodata:: WAV2VEC2_ASR_LARGE_LV60K_100H
      :no-value:

WAV2VEC2_ASR_LARGE_LV60K_960H
149
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
150
151
152
153
154
155

.. container:: py attribute

   .. autodata:: WAV2VEC2_ASR_LARGE_LV60K_960H
      :no-value:

156
157
158
159
160
161
162
163
VOXPOPULI_ASR_BASE_10K_DE
~~~~~~~~~~~~~~~~~~~~~~~~~

.. container:: py attribute

   .. autodata:: VOXPOPULI_ASR_BASE_10K_DE
      :no-value:

164
165
166
167
168
169
170
171
VOXPOPULI_ASR_BASE_10K_ES
~~~~~~~~~~~~~~~~~~~~~~~~~

.. container:: py attribute

   .. autodata:: VOXPOPULI_ASR_BASE_10K_ES
      :no-value:

172
173
174
175
176
177
178
179
VOXPOPULI_ASR_BASE_10K_FR
~~~~~~~~~~~~~~~~~~~~~~~~~

.. container:: py attribute

   .. autodata:: VOXPOPULI_ASR_BASE_10K_FR
      :no-value:

180
181
182
183
184
185
186
187
VOXPOPULI_ASR_BASE_10K_IT
~~~~~~~~~~~~~~~~~~~~~~~~~

.. container:: py attribute

   .. autodata:: VOXPOPULI_ASR_BASE_10K_IT
      :no-value:

188
HUBERT_ASR_LARGE
189
~~~~~~~~~~~~~~~~
190
191
192
193
194
195
196

.. container:: py attribute

   .. autodata:: HUBERT_ASR_LARGE
      :no-value:

HUBERT_ASR_XLARGE
197
~~~~~~~~~~~~~~~~~
198
199
200
201

.. container:: py attribute

   .. autodata:: HUBERT_ASR_XLARGE
moto's avatar
moto committed
202
      :no-value:
moto's avatar
moto committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

Tacotron2 Text-To-Speech
------------------------

Tacotron2TTSBundle
~~~~~~~~~~~~~~~~~~

.. autoclass:: Tacotron2TTSBundle

   .. automethod:: get_text_processor

   .. automethod:: get_tacotron2

   .. automethod:: get_vocoder

Tacotron2TTSBundle - TextProcessor
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: torchaudio.pipelines::Tacotron2TTSBundle.TextProcessor
   :members: tokens
   :special-members: __call__


Tacotron2TTSBundle - Vocoder
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: torchaudio.pipelines::Tacotron2TTSBundle.Vocoder
   :members: sample_rate
   :special-members: __call__


TACOTRON2_WAVERNN_PHONE_LJSPEECH
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. container:: py attribute

   .. autodata:: TACOTRON2_WAVERNN_PHONE_LJSPEECH
      :no-value:


TACOTRON2_WAVERNN_CHAR_LJSPEECH
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. container:: py attribute

   .. autodata:: TACOTRON2_WAVERNN_CHAR_LJSPEECH
      :no-value:

TACOTRON2_GRIFFINLIM_PHONE_LJSPEECH
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. container:: py attribute

   .. autodata:: TACOTRON2_GRIFFINLIM_PHONE_LJSPEECH
      :no-value:

TACOTRON2_GRIFFINLIM_CHAR_LJSPEECH
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. container:: py attribute

   .. autodata:: TACOTRON2_GRIFFINLIM_CHAR_LJSPEECH
265
266
267
268
269
270
      :no-value:

References
----------

.. footbibliography::