"git@developer.sourcefind.cn:zhaoyu6/sglang.git" did not exist on "e6f113569e5156c01156421c81259a1816a2d448"
test_torchscript_consistency.py 20.2 KB
Newer Older
1
2
"""Test suites for jit-ability and its numerical compatibility"""
import unittest
3
import pytest
4
5
6
7

import torch
import torchaudio
import torchaudio.functional as F
8
import torchaudio.transforms as T
9
10
11
12

import common_utils


13
def _assert_functional_consistency(func, tensor, shape_only=False):
14
15
16
17
18
19
20
21
22
23
    ts_func = torch.jit.script(func)
    output = func(tensor)
    ts_output = ts_func(tensor)

    if shape_only:
        assert ts_output.shape == output.shape, (ts_output.shape, output.shape)
    else:
        torch.testing.assert_allclose(ts_output, output)


24
def _assert_transforms_consistency(transform, tensor):
25
26
27
28
29
30
    ts_transform = torch.jit.script(transform)
    output = transform(tensor)
    ts_output = ts_transform(tensor)
    torch.testing.assert_allclose(ts_output, output)


31
class Functional(common_utils.TestBaseMixin):
32
33
    """Implements test for `functinoal` modul that are performed for different devices"""
    def _assert_consistency(self, func, tensor, shape_only=False):
34
35
        tensor = tensor.to(device=self.device, dtype=self.dtype)
        return _assert_functional_consistency(func, tensor, shape_only=shape_only)
36
37

    def test_spectrogram(self):
38
39
40
41
42
43
44
45
46
47
        def func(tensor):
            n_fft = 400
            ws = 400
            hop = 200
            pad = 0
            window = torch.hann_window(ws, device=tensor.device, dtype=tensor.dtype)
            power = 2.
            normalize = False
            return F.spectrogram(tensor, pad, window, n_fft, hop, ws, power, normalize)

48
        tensor = torch.rand((1, 1000))
49
        self._assert_consistency(func, tensor)
50
51

    def test_griffinlim(self):
52
53
54
55
56
57
58
59
60
61
62
63
64
        def func(tensor):
            n_fft = 400
            ws = 400
            hop = 200
            window = torch.hann_window(ws, device=tensor.device, dtype=tensor.dtype)
            power = 2.
            normalize = False
            momentum = 0.99
            n_iter = 32
            length = 1000
            rand_int = False
            return F.griffinlim(tensor, window, n_fft, hop, ws, power, normalize, n_iter, momentum, length, rand_int)

65
        tensor = torch.rand((1, 201, 6))
66
        self._assert_consistency(func, tensor)
67
68

    def test_compute_deltas(self):
69
70
71
72
        def func(tensor):
            win_length = 2 * 7 + 1
            return F.compute_deltas(tensor, win_length=win_length)

73
74
75
        channel = 13
        n_mfcc = channel * 3
        time = 1021
76
77
        tensor = torch.randn(channel, n_mfcc, time)
        self._assert_consistency(func, tensor)
78
79

    def test_detect_pitch_frequency(self):
80
        filepath = common_utils.get_asset_path('steam-train-whistle-daniel_simon.wav')
81
82
83
84
85
86
87
        waveform, _ = torchaudio.load(filepath)

        def func(tensor):
            sample_rate = 44100
            return F.detect_pitch_frequency(tensor, sample_rate)

        self._assert_consistency(func, waveform)
88
89

    def test_create_fb_matrix(self):
90
91
        if self.device != torch.device('cpu'):
            raise unittest.SkipTest('No need to perform test on device other than CPU')
92

93
94
95
96
97
98
        def func(_):
            n_stft = 100
            f_min = 0.0
            f_max = 20.0
            n_mels = 10
            sample_rate = 16000
Vincent QB's avatar
Vincent QB committed
99
100
            norm = ""
            return F.create_fb_matrix(n_stft, f_min, f_max, n_mels, sample_rate, norm)
101
102
103

        dummy = torch.zeros(1, 1)
        self._assert_consistency(func, dummy)
104
105

    def test_amplitude_to_DB(self):
106
107
108
109
110
111
        def func(tensor):
            multiplier = 10.0
            amin = 1e-10
            db_multiplier = 0.0
            top_db = 80.0
            return F.amplitude_to_DB(tensor, multiplier, amin, db_multiplier, top_db)
112

113
114
        tensor = torch.rand((6, 201))
        self._assert_consistency(func, tensor)
115
116

    def test_DB_to_amplitude(self):
117
118
119
120
        def func(tensor):
            ref = 1.
            power = 1.
            return F.DB_to_amplitude(tensor, ref, power)
121

122
123
        tensor = torch.rand((1, 100))
        self._assert_consistency(func, tensor)
124
125

    def test_create_dct(self):
126
127
128
129
130
131
132
133
        if self.device != torch.device('cpu'):
            raise unittest.SkipTest('No need to perform test on device other than CPU')

        def func(_):
            n_mfcc = 40
            n_mels = 128
            norm = "ortho"
            return F.create_dct(n_mfcc, n_mels, norm)
134

135
136
        dummy = torch.zeros(1, 1)
        self._assert_consistency(func, dummy)
137
138

    def test_mu_law_encoding(self):
139
140
141
        def func(tensor):
            qc = 256
            return F.mu_law_encoding(tensor, qc)
142

143
144
        tensor = torch.rand((1, 10))
        self._assert_consistency(func, tensor)
145
146

    def test_mu_law_decoding(self):
147
148
149
        def func(tensor):
            qc = 256
            return F.mu_law_decoding(tensor, qc)
150

151
152
        tensor = torch.rand((1, 10))
        self._assert_consistency(func, tensor)
153
154

    def test_complex_norm(self):
155
156
157
        def func(tensor):
            power = 2.
            return F.complex_norm(tensor, power)
158

159
        tensor = torch.randn(1, 2, 1025, 400, 2)
160
        self._assert_consistency(func, tensor)
161
162

    def test_mask_along_axis(self):
163
164
165
166
167
        def func(tensor):
            mask_param = 100
            mask_value = 30.
            axis = 2
            return F.mask_along_axis(tensor, mask_param, mask_value, axis)
168

169
170
        tensor = torch.randn(2, 1025, 400)
        self._assert_consistency(func, tensor)
171
172

    def test_mask_along_axis_iid(self):
173
174
175
176
177
        def func(tensor):
            mask_param = 100
            mask_value = 30.
            axis = 2
            return F.mask_along_axis_iid(tensor, mask_param, mask_value, axis)
178

179
180
        tensor = torch.randn(4, 2, 1025, 400)
        self._assert_consistency(func, tensor)
181
182

    def test_gain(self):
183
184
185
186
        def func(tensor):
            gainDB = 2.0
            return F.gain(tensor, gainDB)

187
        tensor = torch.rand((1, 1000))
188
189
190
191
192
193
194
195
        self._assert_consistency(func, tensor)

    def test_dither_TPDF(self):
        def func(tensor):
            return F.dither(tensor, 'TPDF')

        tensor = torch.rand((2, 1000))
        self._assert_consistency(func, tensor, shape_only=True)
196

197
198
199
    def test_dither_RPDF(self):
        def func(tensor):
            return F.dither(tensor, 'RPDF')
200
201

        tensor = torch.rand((2, 1000))
202
        self._assert_consistency(func, tensor, shape_only=True)
203

204
205
206
207
208
209
    def test_dither_GPDF(self):
        def func(tensor):
            return F.dither(tensor, 'GPDF')

        tensor = torch.rand((2, 1000))
        self._assert_consistency(func, tensor, shape_only=True)
210

211
    def test_lfilter(self):
212
213
214
        if self.dtype == torch.float64:
            pytest.xfail("This test is known to fail for float64")

215
        filepath = common_utils.get_asset_path('whitenoise.wav')
216
217
        waveform, _ = torchaudio.load(filepath, normalization=True)

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
        def func(tensor):
            # Design an IIR lowpass filter using scipy.signal filter design
            # https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirdesign.html#scipy.signal.iirdesign
            #
            # Example
            #     >>> from scipy.signal import iirdesign
            #     >>> b, a = iirdesign(0.2, 0.3, 1, 60)
            b_coeffs = torch.tensor(
                [
                    0.00299893,
                    -0.0051152,
                    0.00841964,
                    -0.00747802,
                    0.00841964,
                    -0.0051152,
                    0.00299893,
                ],
                device=tensor.device,
                dtype=tensor.dtype,
            )
            a_coeffs = torch.tensor(
                [
                    1.0,
                    -4.8155751,
                    10.2217618,
                    -12.14481273,
                    8.49018171,
                    -3.3066882,
                    0.56088705,
                ],
                device=tensor.device,
                dtype=tensor.dtype,
            )
            return F.lfilter(tensor, a_coeffs, b_coeffs)

        self._assert_consistency(func, waveform)
254
255

    def test_lowpass(self):
256
257
258
        if self.dtype == torch.float64:
            pytest.xfail("This test is known to fail for float64")

259
        filepath = common_utils.get_asset_path('whitenoise.wav')
260
        waveform, _ = torchaudio.load(filepath, normalization=True)
261

262
263
264
265
266
267
        def func(tensor):
            sample_rate = 44100
            cutoff_freq = 3000.
            return F.lowpass_biquad(tensor, sample_rate, cutoff_freq)

        self._assert_consistency(func, waveform)
268

269
    def test_highpass(self):
270
271
272
        if self.dtype == torch.float64:
            pytest.xfail("This test is known to fail for float64")

273
        filepath = common_utils.get_asset_path('whitenoise.wav')
274
        waveform, _ = torchaudio.load(filepath, normalization=True)
275

276
277
278
279
        def func(tensor):
            sample_rate = 44100
            cutoff_freq = 2000.
            return F.highpass_biquad(tensor, sample_rate, cutoff_freq)
280

281
282
283
        self._assert_consistency(func, waveform)

    def test_allpass(self):
284
285
286
        if self.dtype == torch.float64:
            pytest.xfail("This test is known to fail for float64")

287
        filepath = common_utils.get_asset_path('whitenoise.wav')
288
        waveform, _ = torchaudio.load(filepath, normalization=True)
289

290
291
292
293
294
295
296
        def func(tensor):
            sample_rate = 44100
            central_freq = 1000.
            q = 0.707
            return F.allpass_biquad(tensor, sample_rate, central_freq, q)

        self._assert_consistency(func, waveform)
297

298
    def test_bandpass_with_csg(self):
299
300
301
        if self.dtype == torch.float64:
            pytest.xfail("This test is known to fail for float64")

302
        filepath = common_utils.get_asset_path("whitenoise.wav")
303
        waveform, _ = torchaudio.load(filepath, normalization=True)
304

305
306
307
308
309
310
        def func(tensor):
            sample_rate = 44100
            central_freq = 1000.
            q = 0.707
            const_skirt_gain = True
            return F.bandpass_biquad(tensor, sample_rate, central_freq, q, const_skirt_gain)
311

312
313
        self._assert_consistency(func, waveform)

314
315
316
317
    def test_bandpass_without_csg(self):
        if self.dtype == torch.float64:
            pytest.xfail("This test is known to fail for float64")

318
        filepath = common_utils.get_asset_path("whitenoise.wav")
319
        waveform, _ = torchaudio.load(filepath, normalization=True)
320

321
322
323
324
325
326
327
328
        def func(tensor):
            sample_rate = 44100
            central_freq = 1000.
            q = 0.707
            const_skirt_gain = True
            return F.bandpass_biquad(tensor, sample_rate, central_freq, q, const_skirt_gain)

        self._assert_consistency(func, waveform)
329

330
    def test_bandreject(self):
331
332
333
        if self.dtype == torch.float64:
            pytest.xfail("This test is known to fail for float64")

334
        filepath = common_utils.get_asset_path("whitenoise.wav")
335
        waveform, _ = torchaudio.load(filepath, normalization=True)
336

337
338
339
340
341
        def func(tensor):
            sample_rate = 44100
            central_freq = 1000.
            q = 0.707
            return F.bandreject_biquad(tensor, sample_rate, central_freq, q)
342

343
344
345
        self._assert_consistency(func, waveform)

    def test_band_with_noise(self):
346
347
348
        if self.dtype == torch.float64:
            pytest.xfail("This test is known to fail for float64")

349
        filepath = common_utils.get_asset_path("whitenoise.wav")
350
        waveform, _ = torchaudio.load(filepath, normalization=True)
351

352
353
354
355
356
357
358
359
        def func(tensor):
            sample_rate = 44100
            central_freq = 1000.
            q = 0.707
            noise = True
            return F.band_biquad(tensor, sample_rate, central_freq, q, noise)

        self._assert_consistency(func, waveform)
360

361
    def test_band_without_noise(self):
362
363
364
        if self.dtype == torch.float64:
            pytest.xfail("This test is known to fail for float64")

365
        filepath = common_utils.get_asset_path("whitenoise.wav")
366
        waveform, _ = torchaudio.load(filepath, normalization=True)
367

368
369
370
371
372
373
374
375
        def func(tensor):
            sample_rate = 44100
            central_freq = 1000.
            q = 0.707
            noise = False
            return F.band_biquad(tensor, sample_rate, central_freq, q, noise)

        self._assert_consistency(func, waveform)
376

377
    def test_treble(self):
378
379
380
        if self.dtype == torch.float64:
            pytest.xfail("This test is known to fail for float64")

381
        filepath = common_utils.get_asset_path("whitenoise.wav")
382
383
384
385
386
387
388
389
390
391
        waveform, _ = torchaudio.load(filepath, normalization=True)

        def func(tensor):
            sample_rate = 44100
            gain = 40.
            central_freq = 1000.
            q = 0.707
            return F.treble_biquad(tensor, sample_rate, gain, central_freq, q)

        self._assert_consistency(func, waveform)
392
393

    def test_deemph(self):
394
395
396
        if self.dtype == torch.float64:
            pytest.xfail("This test is known to fail for float64")

397
        filepath = common_utils.get_asset_path("whitenoise.wav")
398
399
400
401
402
403
404
        waveform, _ = torchaudio.load(filepath, normalization=True)

        def func(tensor):
            sample_rate = 44100
            return F.deemph_biquad(tensor, sample_rate)

        self._assert_consistency(func, waveform)
405
406

    def test_riaa(self):
407
408
409
        if self.dtype == torch.float64:
            pytest.xfail("This test is known to fail for float64")

410
        filepath = common_utils.get_asset_path("whitenoise.wav")
411
        waveform, _ = torchaudio.load(filepath, normalization=True)
412

413
414
415
416
417
        def func(tensor):
            sample_rate = 44100
            return F.riaa_biquad(tensor, sample_rate)

        self._assert_consistency(func, waveform)
418

419
    def test_equalizer(self):
420
421
422
        if self.dtype == torch.float64:
            pytest.xfail("This test is known to fail for float64")

423
        filepath = common_utils.get_asset_path("whitenoise.wav")
424
425
426
427
428
429
430
431
432
433
        waveform, _ = torchaudio.load(filepath, normalization=True)

        def func(tensor):
            sample_rate = 44100
            center_freq = 300.
            gain = 1.
            q = 0.707
            return F.equalizer_biquad(tensor, sample_rate, center_freq, gain, q)

        self._assert_consistency(func, waveform)
434
435

    def test_perf_biquad_filtering(self):
436
437
438
        if self.dtype == torch.float64:
            pytest.xfail("This test is known to fail for float64")

439
        filepath = common_utils.get_asset_path("whitenoise.wav")
440
        waveform, _ = torchaudio.load(filepath, normalization=True)
441
442
443
444
445
446
447

        def func(tensor):
            a = torch.tensor([0.7, 0.2, 0.6], device=tensor.device, dtype=tensor.dtype)
            b = torch.tensor([0.4, 0.2, 0.9], device=tensor.device, dtype=tensor.dtype)
            return F.lfilter(tensor, a, b)

        self._assert_consistency(func, waveform)
448

wanglong001's avatar
wanglong001 committed
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
    def test_sliding_window_cmn(self):
        def func(tensor):
            cmn_window = 600
            min_cmn_window = 100
            center = False
            norm_vars = False
            a = torch.tensor(
                [
                    [
                        -1.915875792503357,
                        1.147700309753418
                    ],
                    [
                        1.8242558240890503,
                        1.3869990110397339
                    ]
                ],
                device=tensor.device,
                dtype=tensor.dtype
            )
            return F.sliding_window_cmn(a, cmn_window, min_cmn_window, center, norm_vars)
        b = torch.tensor(
            [
                [
                    -1.8701,
                    -0.1196
                ],
                [
                    1.8701,
                    0.1196
                ]
            ]
        )
        self._assert_consistency(func, b)

484
485
486
487
488
489
490
491
492
493
    def test_contrast(self):
        filepath = common_utils.get_asset_path("whitenoise.wav")
        waveform, _ = torchaudio.load(filepath, normalization=True)

        def func(tensor):
            enhancement_amount = 80.
            return F.contrast(tensor, enhancement_amount)

        self._assert_consistency(func, waveform)

494
495
496
497
498
499
500
501
502
503
504
    def test_dcshift(self):
        filepath = common_utils.get_asset_path("whitenoise.wav")
        waveform, _ = torchaudio.load(filepath, normalization=True)

        def func(tensor):
            shift = 0.5
            limiter_gain = 0.05
            return F.dcshift(tensor, shift, limiter_gain)

        self._assert_consistency(func, waveform)

505
506
507
508
509
510
511
512
513
514
515
    def test_overdrive(self):
        filepath = common_utils.get_asset_path("whitenoise.wav")
        waveform, _ = torchaudio.load(filepath, normalization=True)

        def func(tensor):
            gain = 30.
            colour = 50.
            return F.overdrive(tensor, gain, colour)

        self._assert_consistency(func, waveform)

516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
    def test_phaser(self):
        filepath = common_utils.get_asset_path("whitenoise.wav")
        waveform, sample_rate = torchaudio.load(filepath, normalization=True)

        def func(tensor):
            gain_in = 0.5
            gain_out = 0.8
            delay_ms = 2.0
            decay = 0.4
            speed = 0.5
            sample_rate = 44100
            return F.phaser(tensor, sample_rate, gain_in, gain_out, delay_ms, decay, speed, sinusoidal=True)

        self._assert_consistency(func, waveform)

531

532
class Transforms(common_utils.TestBaseMixin):
533
534
    """Implements test for Transforms that are performed for different devices"""
    def _assert_consistency(self, transform, tensor):
535
536
537
        tensor = tensor.to(device=self.device, dtype=self.dtype)
        transform = transform.to(device=self.device, dtype=self.dtype)
        _assert_transforms_consistency(transform, tensor)
538
539
540

    def test_Spectrogram(self):
        tensor = torch.rand((1, 1000))
541
        self._assert_consistency(T.Spectrogram(), tensor)
542
543
544

    def test_GriffinLim(self):
        tensor = torch.rand((1, 201, 6))
545
        self._assert_consistency(T.GriffinLim(length=1000, rand_init=False), tensor)
546
547
548

    def test_AmplitudeToDB(self):
        spec = torch.rand((6, 201))
549
        self._assert_consistency(T.AmplitudeToDB(), spec)
550
551
552

    def test_MelScale(self):
        spec_f = torch.rand((1, 6, 201))
553
        self._assert_consistency(T.MelScale(), spec_f)
554
555
556

    def test_MelSpectrogram(self):
        tensor = torch.rand((1, 1000))
557
        self._assert_consistency(T.MelSpectrogram(), tensor)
558
559
560

    def test_MFCC(self):
        tensor = torch.rand((1, 1000))
561
        self._assert_consistency(T.MFCC(), tensor)
562
563
564
565
566

    def test_Resample(self):
        tensor = torch.rand((2, 1000))
        sample_rate = 100.
        sample_rate_2 = 50.
567
        self._assert_consistency(T.Resample(sample_rate, sample_rate_2), tensor)
568
569
570

    def test_ComplexNorm(self):
        tensor = torch.rand((1, 2, 201, 2))
571
        self._assert_consistency(T.ComplexNorm(), tensor)
572
573
574

    def test_MuLawEncoding(self):
        tensor = torch.rand((1, 10))
575
        self._assert_consistency(T.MuLawEncoding(), tensor)
576
577
578

    def test_MuLawDecoding(self):
        tensor = torch.rand((1, 10))
579
        self._assert_consistency(T.MuLawDecoding(), tensor)
580
581
582
583
584
585

    def test_TimeStretch(self):
        n_freq = 400
        hop_length = 512
        fixed_rate = 1.3
        tensor = torch.rand((10, 2, n_freq, 10, 2))
586
587
588
589
        self._assert_consistency(
            T.TimeStretch(n_freq=n_freq, hop_length=hop_length, fixed_rate=fixed_rate),
            tensor,
        )
590
591

    def test_Fade(self):
592
        test_filepath = common_utils.get_asset_path('steam-train-whistle-daniel_simon.wav')
593
594
595
        waveform, _ = torchaudio.load(test_filepath)
        fade_in_len = 3000
        fade_out_len = 3000
596
        self._assert_consistency(T.Fade(fade_in_len, fade_out_len), waveform)
597
598
599

    def test_FrequencyMasking(self):
        tensor = torch.rand((10, 2, 50, 10, 2))
600
        self._assert_consistency(T.FrequencyMasking(freq_mask_param=60, iid_masks=False), tensor)
601
602
603

    def test_TimeMasking(self):
        tensor = torch.rand((10, 2, 50, 10, 2))
604
        self._assert_consistency(T.TimeMasking(time_mask_param=30, iid_masks=False), tensor)
605
606

    def test_Vol(self):
607
        test_filepath = common_utils.get_asset_path('steam-train-whistle-daniel_simon.wav')
608
        waveform, _ = torchaudio.load(test_filepath)
609
610
        self._assert_consistency(T.Vol(1.1), waveform)

wanglong001's avatar
wanglong001 committed
611
612
613
614
    def test_SlidingWindowCmn(self):
        tensor = torch.rand((1000, 10))
        self._assert_consistency(T.SlidingWindowCmn(), tensor)

Artyom Astafurov's avatar
Artyom Astafurov committed
615
    def test_Vad(self):
616
        filepath = common_utils.get_asset_path("vad-go-mono-32000.wav")
Artyom Astafurov's avatar
Artyom Astafurov committed
617
618
619
        waveform, sample_rate = torchaudio.load(filepath)
        self._assert_consistency(T.Vad(sample_rate=sample_rate), waveform)

620

621
common_utils.define_test_suites(globals(), [Functional, Transforms])