test_torchscript_consistency.py 13.7 KB
Newer Older
1
2
3
4
5
6
7
"""Test suites for jit-ability and its numerical compatibility"""
import os
import unittest

import torch
import torchaudio
import torchaudio.functional as F
8
import torchaudio.transforms
9
10
11
12

import common_utils


13
def _assert_functional_consistency(py_method, *args, shape_only=False, **kwargs):
14
15
16
17
18
    jit_method = torch.jit.script(py_method)

    jit_out = jit_method(*args, **kwargs)
    py_out = py_method(*args, **kwargs)

19
20
21
22
    if shape_only:
        assert jit_out.shape == py_out.shape, (jit_out.shape, py_out.shape)
    else:
        torch.testing.assert_allclose(jit_out, py_out)
23
24


25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
def _test_lfilter(waveform):
    """
    Design an IIR lowpass filter using scipy.signal filter design
    https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirdesign.html#scipy.signal.iirdesign

    Example
        >>> from scipy.signal import iirdesign
        >>> b, a = iirdesign(0.2, 0.3, 1, 60)
    """
    b_coeffs = torch.tensor(
        [
            0.00299893,
            -0.0051152,
            0.00841964,
            -0.00747802,
            0.00841964,
            -0.0051152,
            0.00299893,
        ],
        device=waveform.device,
    )
    a_coeffs = torch.tensor(
        [
            1.0,
            -4.8155751,
            10.2217618,
            -12.14481273,
            8.49018171,
            -3.3066882,
            0.56088705,
        ],
        device=waveform.device,
    )
58
    _assert_functional_consistency(F.lfilter, waveform, a_coeffs, b_coeffs)
59
60


61
62
63
64
65
66
67
68
69
70
71
72
class TestFunctional(unittest.TestCase):
    """Test functions in `functional` module."""
    def test_spectrogram(self):
        tensor = torch.rand((1, 1000))
        n_fft = 400
        ws = 400
        hop = 200
        pad = 0
        window = torch.hann_window(ws)
        power = 2
        normalize = False

73
        _assert_functional_consistency(
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
            F.spectrogram, tensor, pad, window, n_fft, hop, ws, power, normalize
        )

    def test_griffinlim(self):
        tensor = torch.rand((1, 201, 6))
        n_fft = 400
        ws = 400
        hop = 200
        window = torch.hann_window(ws)
        power = 2
        normalize = False
        momentum = 0.99
        n_iter = 32
        length = 1000

89
        _assert_functional_consistency(
90
91
92
93
94
95
96
97
98
99
            F.griffinlim, tensor, window, n_fft, hop, ws, power, normalize, n_iter, momentum, length, 0
        )

    def test_compute_deltas(self):
        channel = 13
        n_mfcc = channel * 3
        time = 1021
        win_length = 2 * 7 + 1
        specgram = torch.randn(channel, n_mfcc, time)

100
        _assert_functional_consistency(F.compute_deltas, specgram, win_length=win_length)
101
102
103
104
105

    def test_detect_pitch_frequency(self):
        filepath = os.path.join(
            common_utils.TEST_DIR_PATH, 'assets', 'steam-train-whistle-daniel_simon.mp3')
        waveform, sample_rate = torchaudio.load(filepath)
106
        _assert_functional_consistency(F.detect_pitch_frequency, waveform, sample_rate)
107
108
109
110
111
112
113
114

    def test_create_fb_matrix(self):
        n_stft = 100
        f_min = 0.0
        f_max = 20.0
        n_mels = 10
        sample_rate = 16000

115
        _assert_functional_consistency(F.create_fb_matrix, n_stft, f_min, f_max, n_mels, sample_rate)
116
117
118
119
120
121
122
123

    def test_amplitude_to_DB(self):
        spec = torch.rand((6, 201))
        multiplier = 10.0
        amin = 1e-10
        db_multiplier = 0.0
        top_db = 80.0

124
        _assert_functional_consistency(F.amplitude_to_DB, spec, multiplier, amin, db_multiplier, top_db)
125
126
127
128
129
130

    def test_DB_to_amplitude(self):
        x = torch.rand((1, 100))
        ref = 1.
        power = 1.

131
        _assert_functional_consistency(F.DB_to_amplitude, x, ref, power)
132
133
134
135
136
137

    def test_create_dct(self):
        n_mfcc = 40
        n_mels = 128
        norm = "ortho"

138
        _assert_functional_consistency(F.create_dct, n_mfcc, n_mels, norm)
139
140
141
142
143

    def test_mu_law_encoding(self):
        tensor = torch.rand((1, 10))
        qc = 256

144
        _assert_functional_consistency(F.mu_law_encoding, tensor, qc)
145
146
147
148
149

    def test_mu_law_decoding(self):
        tensor = torch.rand((1, 10))
        qc = 256

150
        _assert_functional_consistency(F.mu_law_decoding, tensor, qc)
151
152
153
154
155

    def test_complex_norm(self):
        complex_tensor = torch.randn(1, 2, 1025, 400, 2)
        power = 2

156
        _assert_functional_consistency(F.complex_norm, complex_tensor, power)
157
158
159
160
161
162
163

    def test_mask_along_axis(self):
        specgram = torch.randn(2, 1025, 400)
        mask_param = 100
        mask_value = 30.
        axis = 2

164
        _assert_functional_consistency(F.mask_along_axis, specgram, mask_param, mask_value, axis)
165
166
167
168
169
170
171

    def test_mask_along_axis_iid(self):
        specgrams = torch.randn(4, 2, 1025, 400)
        mask_param = 100
        mask_value = 30.
        axis = 2

172
        _assert_functional_consistency(F.mask_along_axis_iid, specgrams, mask_param, mask_value, axis)
173
174
175
176
177

    def test_gain(self):
        tensor = torch.rand((1, 1000))
        gainDB = 2.0

178
        _assert_functional_consistency(F.gain, tensor, gainDB)
179
180
181
182

    def test_dither(self):
        tensor = torch.rand((2, 1000))

183
184
185
        _assert_functional_consistency(F.dither, tensor, shape_only=True)
        _assert_functional_consistency(F.dither, tensor, "RPDF", shape_only=True)
        _assert_functional_consistency(F.dither, tensor, "GPDF", shape_only=True)
186

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    def test_lfilter(self):
        filepath = os.path.join(common_utils.TEST_DIR_PATH, 'assets', 'whitenoise.wav')
        waveform, _ = torchaudio.load(filepath, normalization=True)
        _test_lfilter(waveform)

    @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available")
    def test_lfilter_cuda(self):
        filepath = os.path.join(common_utils.TEST_DIR_PATH, "assets", "whitenoise.wav")
        waveform, _ = torchaudio.load(filepath, normalization=True)
        _test_lfilter(waveform.cuda(device=torch.device("cuda:0")))

    def test_lowpass(self):
        cutoff_freq = 3000

        filepath = os.path.join(common_utils.TEST_DIR_PATH, 'assets', 'whitenoise.wav')
        waveform, sample_rate = torchaudio.load(filepath, normalization=True)
203
        _assert_functional_consistency(F.lowpass_biquad, waveform, sample_rate, cutoff_freq)
204
205
206
207
208
209

    def test_highpass(self):
        cutoff_freq = 2000

        filepath = os.path.join(common_utils.TEST_DIR_PATH, 'assets', 'whitenoise.wav')
        waveform, sample_rate = torchaudio.load(filepath, normalization=True)
210
        _assert_functional_consistency(F.highpass_biquad, waveform, sample_rate, cutoff_freq)
211
212
213
214
215
216
217

    def test_allpass(self):
        central_freq = 1000
        q = 0.707

        filepath = os.path.join(common_utils.TEST_DIR_PATH, 'assets', 'whitenoise.wav')
        waveform, sample_rate = torchaudio.load(filepath, normalization=True)
218
        _assert_functional_consistency(F.allpass_biquad, waveform, sample_rate, central_freq, q)
219
220
221
222
223
224
225
226

    def test_bandpass_with_csg(self):
        central_freq = 1000
        q = 0.707
        const_skirt_gain = True

        filepath = os.path.join(common_utils.TEST_DIR_PATH, "assets", "whitenoise.wav")
        waveform, sample_rate = torchaudio.load(filepath, normalization=True)
227
        _assert_functional_consistency(
228
229
230
231
232
233
234
235
236
            F.bandpass_biquad, waveform, sample_rate, central_freq, q, const_skirt_gain)

    def test_bandpass_withou_csg(self):
        central_freq = 1000
        q = 0.707
        const_skirt_gain = False

        filepath = os.path.join(common_utils.TEST_DIR_PATH, "assets", "whitenoise.wav")
        waveform, sample_rate = torchaudio.load(filepath, normalization=True)
237
        _assert_functional_consistency(
238
239
240
241
242
243
244
245
            F.bandpass_biquad, waveform, sample_rate, central_freq, q, const_skirt_gain)

    def test_bandreject(self):
        central_freq = 1000
        q = 0.707

        filepath = os.path.join(common_utils.TEST_DIR_PATH, "assets", "whitenoise.wav")
        waveform, sample_rate = torchaudio.load(filepath, normalization=True)
246
        _assert_functional_consistency(
247
248
249
250
251
252
253
254
255
            F.bandreject_biquad, waveform, sample_rate, central_freq, q)

    def test_band_with_noise(self):
        central_freq = 1000
        q = 0.707
        noise = True

        filepath = os.path.join(common_utils.TEST_DIR_PATH, "assets", "whitenoise.wav")
        waveform, sample_rate = torchaudio.load(filepath, normalization=True)
256
        _assert_functional_consistency(F.band_biquad, waveform, sample_rate, central_freq, q, noise)
257
258
259
260
261
262
263
264

    def test_band_without_noise(self):
        central_freq = 1000
        q = 0.707
        noise = False

        filepath = os.path.join(common_utils.TEST_DIR_PATH, "assets", "whitenoise.wav")
        waveform, sample_rate = torchaudio.load(filepath, normalization=True)
265
        _assert_functional_consistency(F.band_biquad, waveform, sample_rate, central_freq, q, noise)
266
267
268
269
270
271
272
273

    def test_treble(self):
        gain = 40
        central_freq = 1000
        q = 0.707

        filepath = os.path.join(common_utils.TEST_DIR_PATH, "assets", "whitenoise.wav")
        waveform, sample_rate = torchaudio.load(filepath, normalization=True)
274
        _assert_functional_consistency(F.treble_biquad, waveform, sample_rate, gain, central_freq, q)
275
276
277
278

    def test_deemph(self):
        filepath = os.path.join(common_utils.TEST_DIR_PATH, "assets", "whitenoise.wav")
        waveform, sample_rate = torchaudio.load(filepath, normalization=True)
279
        _assert_functional_consistency(F.deemph_biquad, waveform, sample_rate)
280
281
282
283

    def test_riaa(self):
        filepath = os.path.join(common_utils.TEST_DIR_PATH, "assets", "whitenoise.wav")
        waveform, sample_rate = torchaudio.load(filepath, normalization=True)
284
        _assert_functional_consistency(F.riaa_biquad, waveform, sample_rate)
285
286
287
288
289
290
291
292

    def test_equalizer(self):
        center_freq = 300
        gain = 1
        q = 0.707

        filepath = os.path.join(common_utils.TEST_DIR_PATH, "assets", "whitenoise.wav")
        waveform, sample_rate = torchaudio.load(filepath, normalization=True)
293
        _assert_functional_consistency(
294
295
296
297
298
299
300
            F.equalizer_biquad, waveform, sample_rate, center_freq, gain, q)

    def test_perf_biquad_filtering(self):
        a = torch.tensor([0.7, 0.2, 0.6])
        b = torch.tensor([0.4, 0.2, 0.9])
        filepath = os.path.join(common_utils.TEST_DIR_PATH, "assets", "whitenoise.wav")
        waveform, _ = torchaudio.load(filepath, normalization=True)
301
        _assert_functional_consistency(F.lfilter, waveform, a, b)
302

303
304
305
306
307
308
309
310
311
312
313
314
315

RUN_CUDA = torch.cuda.is_available()
print("Run test with cuda:", RUN_CUDA)


def _test_script_module(f, tensor, *args, **kwargs):

    py_method = f(*args, **kwargs)
    jit_method = torch.jit.script(py_method)

    py_out = py_method(tensor)
    jit_out = jit_method(tensor)

316
    torch.testing.assert_allclose(jit_out, py_out)
317
318
319
320
321
322
323
324
325
326
327

    if RUN_CUDA:

        tensor = tensor.to("cuda")

        py_method = py_method.cuda()
        jit_method = torch.jit.script(py_method)

        py_out = py_method(tensor)
        jit_out = jit_method(tensor)

328
        torch.testing.assert_allclose(jit_out, py_out)
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407


class TestTransforms(unittest.TestCase):
    def test_Spectrogram(self):
        tensor = torch.rand((1, 1000))
        _test_script_module(torchaudio.transforms.Spectrogram, tensor)

    def test_GriffinLim(self):
        tensor = torch.rand((1, 201, 6))
        _test_script_module(torchaudio.transforms.GriffinLim, tensor, length=1000, rand_init=False)

    def test_AmplitudeToDB(self):
        spec = torch.rand((6, 201))
        _test_script_module(torchaudio.transforms.AmplitudeToDB, spec)

    def test_MelScale(self):
        spec_f = torch.rand((1, 6, 201))
        _test_script_module(torchaudio.transforms.MelScale, spec_f)

    def test_MelSpectrogram(self):
        tensor = torch.rand((1, 1000))
        _test_script_module(torchaudio.transforms.MelSpectrogram, tensor)

    def test_MFCC(self):
        tensor = torch.rand((1, 1000))
        _test_script_module(torchaudio.transforms.MFCC, tensor)

    def test_Resample(self):
        tensor = torch.rand((2, 1000))
        sample_rate = 100.
        sample_rate_2 = 50.

        _test_script_module(torchaudio.transforms.Resample, tensor, sample_rate, sample_rate_2)

    def test_ComplexNorm(self):
        tensor = torch.rand((1, 2, 201, 2))
        _test_script_module(torchaudio.transforms.ComplexNorm, tensor)

    def test_MuLawEncoding(self):
        tensor = torch.rand((1, 10))
        _test_script_module(torchaudio.transforms.MuLawEncoding, tensor)

    def test_MuLawDecoding(self):
        tensor = torch.rand((1, 10))
        _test_script_module(torchaudio.transforms.MuLawDecoding, tensor)

    def test_TimeStretch(self):
        n_freq = 400
        hop_length = 512
        fixed_rate = 1.3
        tensor = torch.rand((10, 2, n_freq, 10, 2))
        _test_script_module(
            torchaudio.transforms.TimeStretch,
            tensor, n_freq=n_freq, hop_length=hop_length, fixed_rate=fixed_rate)

    def test_Fade(self):
        test_filepath = os.path.join(
            common_utils.TEST_DIR_PATH, 'assets', 'steam-train-whistle-daniel_simon.wav')
        waveform, _ = torchaudio.load(test_filepath)
        fade_in_len = 3000
        fade_out_len = 3000

        _test_script_module(torchaudio.transforms.Fade, waveform, fade_in_len, fade_out_len)

    def test_FrequencyMasking(self):
        tensor = torch.rand((10, 2, 50, 10, 2))
        _test_script_module(
            torchaudio.transforms.FrequencyMasking, tensor, freq_mask_param=60, iid_masks=False)

    def test_TimeMasking(self):
        tensor = torch.rand((10, 2, 50, 10, 2))
        _test_script_module(
            torchaudio.transforms.TimeMasking, tensor, time_mask_param=30, iid_masks=False)

    def test_Vol(self):
        test_filepath = os.path.join(
            common_utils.TEST_DIR_PATH, 'assets', 'steam-train-whistle-daniel_simon.wav')
        waveform, _ = torchaudio.load(test_filepath)
        _test_script_module(torchaudio.transforms.Vol, waveform, 1.1)
Vincent QB's avatar
Vincent QB committed
408
409
410
411


if __name__ == '__main__':
    unittest.main()