test_functional.py 14.7 KB
Newer Older
jamarshon's avatar
jamarshon committed
1
import math
2
import unittest
jamarshon's avatar
jamarshon committed
3
4
5

import torch
import torchaudio
6
7
import torchaudio.functional as F
import pytest
jamarshon's avatar
jamarshon committed
8

9
import common_utils
10

jamarshon's avatar
jamarshon committed
11

12
class Lfilter(common_utils.TestBaseMixin):
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
    def test_simple(self):
        """
        Create a very basic signal,
        Then make a simple 4th order delay
        The output should be same as the input but shifted
        """

        torch.random.manual_seed(42)
        waveform = torch.rand(2, 44100 * 1, dtype=self.dtype, device=self.device)
        b_coeffs = torch.tensor([0, 0, 0, 1], dtype=self.dtype, device=self.device)
        a_coeffs = torch.tensor([1, 0, 0, 0], dtype=self.dtype, device=self.device)
        output_waveform = F.lfilter(waveform, a_coeffs, b_coeffs)

        torch.testing.assert_allclose(output_waveform[:, 3:], waveform[:, 0:-3], atol=1e-5, rtol=1e-5)

28
29
30
31
32
    def test_clamp(self):
        input_signal = torch.ones(1, 44100 * 1, dtype=self.dtype, device=self.device)
        b_coeffs = torch.tensor([1, 0], dtype=self.dtype, device=self.device)
        a_coeffs = torch.tensor([1, -0.95], dtype=self.dtype, device=self.device)
        output_signal = F.lfilter(input_signal, a_coeffs, b_coeffs, clamp=True)
33
        assert output_signal.max() <= 1
34
        output_signal = F.lfilter(input_signal, a_coeffs, b_coeffs, clamp=False)
35
        assert output_signal.max() > 1
36
37


38
common_utils.define_test_suites(globals(), [Lfilter])
39
40


moto's avatar
moto committed
41
42
43
44
45
46
class TestComputeDeltas(unittest.TestCase):
    """Test suite for correctness of compute_deltas"""
    def test_one_channel(self):
        specgram = torch.tensor([[[1.0, 2.0, 3.0, 4.0]]])
        expected = torch.tensor([[[0.5, 1.0, 1.0, 0.5]]])
        computed = F.compute_deltas(specgram, win_length=3)
47
        torch.testing.assert_allclose(computed, expected)
Vincent QB's avatar
Vincent QB committed
48

moto's avatar
moto committed
49
50
51
52
53
54
    def test_two_channels(self):
        specgram = torch.tensor([[[1.0, 2.0, 3.0, 4.0],
                                  [1.0, 2.0, 3.0, 4.0]]])
        expected = torch.tensor([[[0.5, 1.0, 1.0, 0.5],
                                  [0.5, 1.0, 1.0, 0.5]]])
        computed = F.compute_deltas(specgram, win_length=3)
55
        torch.testing.assert_allclose(computed, expected)
56

Vincent QB's avatar
Vincent QB committed
57

moto's avatar
moto committed
58
59
60
def _compare_estimate(sound, estimate, atol=1e-6, rtol=1e-8):
    # trim sound for case when constructed signal is shorter than original
    sound = sound[..., :estimate.size(-1)]
61
    torch.testing.assert_allclose(estimate, sound, atol=atol, rtol=rtol)
Vincent QB's avatar
Vincent QB committed
62
63


moto's avatar
moto committed
64
65
66
67
68
def _test_istft_is_inverse_of_stft(kwargs):
    # generates a random sound signal for each tril and then does the stft/istft
    # operation to check whether we can reconstruct signal
    for data_size in [(2, 20), (3, 15), (4, 10)]:
        for i in range(100):
jamarshon's avatar
jamarshon committed
69

moto's avatar
moto committed
70
            sound = common_utils.random_float_tensor(i, data_size)
jamarshon's avatar
jamarshon committed
71

moto's avatar
moto committed
72
73
            stft = torch.stft(sound, **kwargs)
            estimate = torchaudio.functional.istft(stft, length=sound.size(1), **kwargs)
Vincent QB's avatar
Vincent QB committed
74

moto's avatar
moto committed
75
            _compare_estimate(sound, estimate)
jamarshon's avatar
jamarshon committed
76
77


moto's avatar
moto committed
78
79
80
class TestIstft(unittest.TestCase):
    """Test suite for correctness of istft with various input"""
    number_of_trials = 100
jamarshon's avatar
jamarshon committed
81
82
83
84
85
86
87
88
89
90
91
92
93

    def test_istft_is_inverse_of_stft1(self):
        # hann_window, centered, normalized, onesided
        kwargs1 = {
            'n_fft': 12,
            'hop_length': 4,
            'win_length': 12,
            'window': torch.hann_window(12),
            'center': True,
            'pad_mode': 'reflect',
            'normalized': True,
            'onesided': True,
        }
moto's avatar
moto committed
94
        _test_istft_is_inverse_of_stft(kwargs1)
jamarshon's avatar
jamarshon committed
95
96
97
98
99
100
101
102
103
104
105
106
107

    def test_istft_is_inverse_of_stft2(self):
        # hann_window, centered, not normalized, not onesided
        kwargs2 = {
            'n_fft': 12,
            'hop_length': 2,
            'win_length': 8,
            'window': torch.hann_window(8),
            'center': True,
            'pad_mode': 'reflect',
            'normalized': False,
            'onesided': False,
        }
moto's avatar
moto committed
108
        _test_istft_is_inverse_of_stft(kwargs2)
jamarshon's avatar
jamarshon committed
109
110
111
112
113
114
115
116
117
118
119
120
121

    def test_istft_is_inverse_of_stft3(self):
        # hamming_window, centered, normalized, not onesided
        kwargs3 = {
            'n_fft': 15,
            'hop_length': 3,
            'win_length': 11,
            'window': torch.hamming_window(11),
            'center': True,
            'pad_mode': 'constant',
            'normalized': True,
            'onesided': False,
        }
moto's avatar
moto committed
122
        _test_istft_is_inverse_of_stft(kwargs3)
jamarshon's avatar
jamarshon committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136

    def test_istft_is_inverse_of_stft4(self):
        # hamming_window, not centered, not normalized, onesided
        # window same size as n_fft
        kwargs4 = {
            'n_fft': 5,
            'hop_length': 2,
            'win_length': 5,
            'window': torch.hamming_window(5),
            'center': False,
            'pad_mode': 'constant',
            'normalized': False,
            'onesided': True,
        }
moto's avatar
moto committed
137
        _test_istft_is_inverse_of_stft(kwargs4)
jamarshon's avatar
jamarshon committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151

    def test_istft_is_inverse_of_stft5(self):
        # hamming_window, not centered, not normalized, not onesided
        # window same size as n_fft
        kwargs5 = {
            'n_fft': 3,
            'hop_length': 2,
            'win_length': 3,
            'window': torch.hamming_window(3),
            'center': False,
            'pad_mode': 'reflect',
            'normalized': False,
            'onesided': False,
        }
moto's avatar
moto committed
152
        _test_istft_is_inverse_of_stft(kwargs5)
jamarshon's avatar
jamarshon committed
153
154
155
156
157
158
159
160
161
162

    def test_istft_of_ones(self):
        # stft = torch.stft(torch.ones(4), 4)
        stft = torch.tensor([
            [[4., 0.], [4., 0.], [4., 0.], [4., 0.], [4., 0.]],
            [[0., 0.], [0., 0.], [0., 0.], [0., 0.], [0., 0.]],
            [[0., 0.], [0., 0.], [0., 0.], [0., 0.], [0., 0.]]
        ])

        estimate = torchaudio.functional.istft(stft, n_fft=4, length=4)
moto's avatar
moto committed
163
        _compare_estimate(torch.ones(4), estimate)
jamarshon's avatar
jamarshon committed
164
165
166
167
168
169

    def test_istft_of_zeros(self):
        # stft = torch.stft(torch.zeros(4), 4)
        stft = torch.zeros((3, 5, 2))

        estimate = torchaudio.functional.istft(stft, n_fft=4, length=4)
moto's avatar
moto committed
170
        _compare_estimate(torch.zeros(4), estimate)
jamarshon's avatar
jamarshon committed
171
172
173
174

    def test_istft_requires_overlap_windows(self):
        # the window is size 1 but it hops 20 so there is a gap which throw an error
        stft = torch.zeros((3, 5, 2))
moto's avatar
moto committed
175
        self.assertRaises(RuntimeError, torchaudio.functional.istft, stft, n_fft=4,
jamarshon's avatar
jamarshon committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
                          hop_length=20, win_length=1, window=torch.ones(1))

    def test_istft_requires_nola(self):
        stft = torch.zeros((3, 5, 2))
        kwargs_ok = {
            'n_fft': 4,
            'win_length': 4,
            'window': torch.ones(4),
        }

        kwargs_not_ok = {
            'n_fft': 4,
            'win_length': 4,
            'window': torch.zeros(4),
        }

        # A window of ones meets NOLA but a window of zeros does not. This should
        # throw an error.
        torchaudio.functional.istft(stft, **kwargs_ok)
moto's avatar
moto committed
195
        self.assertRaises(RuntimeError, torchaudio.functional.istft, stft, **kwargs_not_ok)
jamarshon's avatar
jamarshon committed
196
197

    def test_istft_requires_non_empty(self):
moto's avatar
moto committed
198
199
        self.assertRaises(RuntimeError, torchaudio.functional.istft, torch.zeros((3, 0, 2)), 2)
        self.assertRaises(RuntimeError, torchaudio.functional.istft, torch.zeros((0, 3, 2)), 2)
jamarshon's avatar
jamarshon committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

    def _test_istft_of_sine(self, amplitude, L, n):
        # stft of amplitude*sin(2*pi/L*n*x) with the hop length and window size equaling L
        x = torch.arange(2 * L + 1, dtype=torch.get_default_dtype())
        sound = amplitude * torch.sin(2 * math.pi / L * x * n)
        # stft = torch.stft(sound, L, hop_length=L, win_length=L,
        #                   window=torch.ones(L), center=False, normalized=False)
        stft = torch.zeros((L // 2 + 1, 2, 2))
        stft_largest_val = (amplitude * L) / 2.0
        if n < stft.size(0):
            stft[n, :, 1] = -stft_largest_val

        if 0 <= L - n < stft.size(0):
            # symmetric about L // 2
            stft[L - n, :, 1] = stft_largest_val

        estimate = torchaudio.functional.istft(stft, L, hop_length=L, win_length=L,
                                               window=torch.ones(L), center=False, normalized=False)
        # There is a larger error due to the scaling of amplitude
moto's avatar
moto committed
219
        _compare_estimate(sound, estimate, atol=1e-3)
jamarshon's avatar
jamarshon committed
220
221
222
223
224
225
226
227
228
229

    def test_istft_of_sine(self):
        self._test_istft_of_sine(amplitude=123, L=5, n=1)
        self._test_istft_of_sine(amplitude=150, L=5, n=2)
        self._test_istft_of_sine(amplitude=111, L=5, n=3)
        self._test_istft_of_sine(amplitude=160, L=7, n=4)
        self._test_istft_of_sine(amplitude=145, L=8, n=5)
        self._test_istft_of_sine(amplitude=80, L=9, n=6)
        self._test_istft_of_sine(amplitude=99, L=10, n=7)

230
231
232
233
234
235
236
237
238
    def _test_linearity_of_istft(self, data_size, kwargs, atol=1e-6, rtol=1e-8):
        for i in range(self.number_of_trials):
            tensor1 = common_utils.random_float_tensor(i, data_size)
            tensor2 = common_utils.random_float_tensor(i * 2, data_size)
            a, b = torch.rand(2)
            istft1 = torchaudio.functional.istft(tensor1, **kwargs)
            istft2 = torchaudio.functional.istft(tensor2, **kwargs)
            istft = a * istft1 + b * istft2
            estimate = torchaudio.functional.istft(a * tensor1 + b * tensor2, **kwargs)
moto's avatar
moto committed
239
            _compare_estimate(istft, estimate, atol, rtol)
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

    def test_linearity_of_istft1(self):
        # hann_window, centered, normalized, onesided
        kwargs1 = {
            'n_fft': 12,
            'window': torch.hann_window(12),
            'center': True,
            'pad_mode': 'reflect',
            'normalized': True,
            'onesided': True,
        }
        data_size = (2, 7, 7, 2)
        self._test_linearity_of_istft(data_size, kwargs1)

    def test_linearity_of_istft2(self):
        # hann_window, centered, not normalized, not onesided
        kwargs2 = {
            'n_fft': 12,
            'window': torch.hann_window(12),
            'center': True,
            'pad_mode': 'reflect',
            'normalized': False,
            'onesided': False,
        }
        data_size = (2, 12, 7, 2)
        self._test_linearity_of_istft(data_size, kwargs2)

    def test_linearity_of_istft3(self):
        # hamming_window, centered, normalized, not onesided
        kwargs3 = {
            'n_fft': 12,
            'window': torch.hamming_window(12),
            'center': True,
            'pad_mode': 'constant',
            'normalized': True,
            'onesided': False,
        }
        data_size = (2, 12, 7, 2)
        self._test_linearity_of_istft(data_size, kwargs3)

    def test_linearity_of_istft4(self):
        # hamming_window, not centered, not normalized, onesided
        kwargs4 = {
            'n_fft': 12,
            'window': torch.hamming_window(12),
            'center': False,
            'pad_mode': 'constant',
            'normalized': False,
            'onesided': True,
        }
        data_size = (2, 7, 3, 2)
        self._test_linearity_of_istft(data_size, kwargs4, atol=1e-5, rtol=1e-8)

moto's avatar
moto committed
293
294

class TestDetectPitchFrequency(unittest.TestCase):
295
    def test_pitch(self):
296
297
        test_filepath_100 = common_utils.get_asset_path("100Hz_44100Hz_16bit_05sec.wav")
        test_filepath_440 = common_utils.get_asset_path("440Hz_44100Hz_16bit_05sec.wav")
Vincent QB's avatar
Vincent QB committed
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313

        # Files from https://www.mediacollege.com/audio/tone/download/
        tests = [
            (test_filepath_100, 100),
            (test_filepath_440, 440),
        ]

        for filename, freq_ref in tests:
            waveform, sample_rate = torchaudio.load(filename)

            freq = torchaudio.functional.detect_pitch_frequency(waveform, sample_rate)

            threshold = 1
            s = ((freq - freq_ref).abs() > threshold).sum()
            self.assertFalse(s)

moto's avatar
moto committed
314
315

class TestDB_to_amplitude(unittest.TestCase):
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    def test_DB_to_amplitude(self):
        # Make some noise
        x = torch.rand(1000)
        spectrogram = torchaudio.transforms.Spectrogram()
        spec = spectrogram(x)

        amin = 1e-10
        ref = 1.0
        db_multiplier = math.log10(max(amin, ref))

        # Waveform amplitude -> DB -> amplitude
        multiplier = 20.
        power = 0.5

        db = F.amplitude_to_DB(torch.abs(x), multiplier, amin, db_multiplier, top_db=None)
        x2 = F.DB_to_amplitude(db, ref, power)

333
        torch.testing.assert_allclose(x2, torch.abs(x), atol=5e-5, rtol=1e-5)
334
335
336
337
338

        # Spectrogram amplitude -> DB -> amplitude
        db = F.amplitude_to_DB(spec, multiplier, amin, db_multiplier, top_db=None)
        x2 = F.DB_to_amplitude(db, ref, power)

339
        torch.testing.assert_allclose(x2, spec, atol=5e-5, rtol=1e-5)
340
341
342
343
344
345
346
347

        # Waveform power -> DB -> power
        multiplier = 10.
        power = 1.

        db = F.amplitude_to_DB(x, multiplier, amin, db_multiplier, top_db=None)
        x2 = F.DB_to_amplitude(db, ref, power)

348
        torch.testing.assert_allclose(x2, torch.abs(x), atol=5e-5, rtol=1e-5)
349
350
351
352
353

        # Spectrogram power -> DB -> power
        db = F.amplitude_to_DB(spec, multiplier, amin, db_multiplier, top_db=None)
        x2 = F.DB_to_amplitude(db, ref, power)

354
        torch.testing.assert_allclose(x2, spec, atol=5e-5, rtol=1e-5)
355

356
357
358
359
360
361
362
363
364
365

@pytest.mark.parametrize('complex_tensor', [
    torch.randn(1, 2, 1025, 400, 2),
    torch.randn(1025, 400, 2)
])
@pytest.mark.parametrize('power', [1, 2, 0.7])
def test_complex_norm(complex_tensor, power):
    expected_norm_tensor = complex_tensor.pow(2).sum(-1).pow(power / 2)
    norm_tensor = F.complex_norm(complex_tensor, power)

366
    torch.testing.assert_allclose(norm_tensor, expected_norm_tensor, atol=1e-5, rtol=1e-5)
367
368


369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
@pytest.mark.parametrize('specgram', [
    torch.randn(2, 1025, 400),
    torch.randn(1, 201, 100)
])
@pytest.mark.parametrize('mask_param', [100])
@pytest.mark.parametrize('mask_value', [0., 30.])
@pytest.mark.parametrize('axis', [1, 2])
def test_mask_along_axis(specgram, mask_param, mask_value, axis):

    mask_specgram = F.mask_along_axis(specgram, mask_param, mask_value, axis)

    other_axis = 1 if axis == 2 else 2

    masked_columns = (mask_specgram == mask_value).sum(other_axis)
    num_masked_columns = (masked_columns == mask_specgram.size(other_axis)).sum()
    num_masked_columns /= mask_specgram.size(0)

    assert mask_specgram.size() == specgram.size()
    assert num_masked_columns < mask_param


@pytest.mark.parametrize('mask_param', [100])
@pytest.mark.parametrize('mask_value', [0., 30.])
@pytest.mark.parametrize('axis', [2, 3])
393
394
395
def test_mask_along_axis_iid(mask_param, mask_value, axis):
    torch.random.manual_seed(42)
    specgrams = torch.randn(4, 2, 1025, 400)
396
397
398
399
400
401
402
403
404
405
406
407

    mask_specgrams = F.mask_along_axis_iid(specgrams, mask_param, mask_value, axis)

    other_axis = 2 if axis == 3 else 3

    masked_columns = (mask_specgrams == mask_value).sum(other_axis)
    num_masked_columns = (masked_columns == mask_specgrams.size(other_axis)).sum(-1)

    assert mask_specgrams.size() == specgrams.size()
    assert (num_masked_columns < mask_param).sum() == num_masked_columns.numel()


jamarshon's avatar
jamarshon committed
408
409
if __name__ == '__main__':
    unittest.main()