test_functional.py 20.6 KB
Newer Older
1
from __future__ import absolute_import, division, print_function, unicode_literals
jamarshon's avatar
jamarshon committed
2
import math
Vincent QB's avatar
Vincent QB committed
3
import os
jamarshon's avatar
jamarshon committed
4
5
6

import torch
import torchaudio
7
8
import torchaudio.functional as F
import pytest
jamarshon's avatar
jamarshon committed
9
import unittest
10
import common_utils
jamarshon's avatar
jamarshon committed
11

12
13
14
15
16
17
from torchaudio.common_utils import IMPORT_LIBROSA

if IMPORT_LIBROSA:
    import numpy as np
    import librosa

jamarshon's avatar
jamarshon committed
18

19
20
21
22
23
24
25
26
27
def _test_torchscript_functional(py_method, *args, **kwargs):
    jit_method = torch.jit.script(py_method)

    jit_out = jit_method(*args, **kwargs)
    py_out = py_method(*args, **kwargs)

    assert torch.allclose(jit_out, py_out)


jamarshon's avatar
jamarshon committed
28
29
30
class TestFunctional(unittest.TestCase):
    data_sizes = [(2, 20), (3, 15), (4, 10)]
    number_of_trials = 100
Vincent QB's avatar
Vincent QB committed
31
32
    specgram = torch.tensor([1., 2., 3., 4.])

Vincent QB's avatar
Vincent QB committed
33
34
35
36
    test_dirpath, test_dir = common_utils.create_temp_assets_dir()
    test_filepath = os.path.join(test_dirpath, 'assets',
                                 'steam-train-whistle-daniel_simon.mp3')

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
    def test_torchscript_spectrogram(self):

        tensor = torch.rand((1, 1000))
        n_fft = 400
        ws = 400
        hop = 200
        pad = 0
        window = torch.hann_window(ws)
        power = 2
        normalize = False

        _test_torchscript_functional(
            F.spectrogram, tensor, pad, window, n_fft, hop, ws, power, normalize
        )

Vincent QB's avatar
Vincent QB committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
    def _test_compute_deltas(self, specgram, expected, win_length=3, atol=1e-6, rtol=1e-8):
        computed = F.compute_deltas(specgram, win_length=win_length)
        self.assertTrue(computed.shape == expected.shape, (computed.shape, expected.shape))
        torch.testing.assert_allclose(computed, expected, atol=atol, rtol=rtol)

    def test_compute_deltas_onechannel(self):
        specgram = self.specgram.unsqueeze(0).unsqueeze(0)
        expected = torch.tensor([[[0.5, 1.0, 1.0, 0.5]]])
        self._test_compute_deltas(specgram, expected)

    def test_compute_deltas_twochannel(self):
        specgram = self.specgram.repeat(1, 2, 1)
        expected = torch.tensor([[[0.5, 1.0, 1.0, 0.5],
                                  [0.5, 1.0, 1.0, 0.5]]])
        self._test_compute_deltas(specgram, expected)

    def test_compute_deltas_randn(self):
        channel = 13
        n_mfcc = channel * 3
        time = 1021
        win_length = 2 * 7 + 1
        specgram = torch.randn(channel, n_mfcc, time)
        computed = F.compute_deltas(specgram, win_length=win_length)
        self.assertTrue(computed.shape == specgram.shape, (computed.shape, specgram.shape))
76
        _test_torchscript_functional(F.compute_deltas, specgram, win_length=win_length)
jamarshon's avatar
jamarshon committed
77

Vincent QB's avatar
Vincent QB committed
78
79
80
81
82
83
84
85
86
87
88
89
90
    def test_batch_pitch(self):
        waveform, sample_rate = torchaudio.load(self.test_filepath)

        # Single then transform then batch
        expected = F.detect_pitch_frequency(waveform, sample_rate)
        expected = expected.unsqueeze(0).repeat(3, 1, 1)

        # Batch then transform
        waveform = waveform.unsqueeze(0).repeat(3, 1, 1)
        computed = F.detect_pitch_frequency(waveform, sample_rate)

        self.assertTrue(computed.shape == expected.shape, (computed.shape, expected.shape))
        self.assertTrue(torch.allclose(computed, expected))
91
        _test_torchscript_functional(F.detect_pitch_frequency, waveform, sample_rate)
Vincent QB's avatar
Vincent QB committed
92

jamarshon's avatar
jamarshon committed
93
94
95
96
97
98
99
100
101
102
103
104
    def _compare_estimate(self, sound, estimate, atol=1e-6, rtol=1e-8):
        # trim sound for case when constructed signal is shorter than original
        sound = sound[..., :estimate.size(-1)]

        self.assertTrue(sound.shape == estimate.shape, (sound.shape, estimate.shape))
        self.assertTrue(torch.allclose(sound, estimate, atol=atol, rtol=rtol))

    def _test_istft_is_inverse_of_stft(self, kwargs):
        # generates a random sound signal for each tril and then does the stft/istft
        # operation to check whether we can reconstruct signal
        for data_size in self.data_sizes:
            for i in range(self.number_of_trials):
Vincent QB's avatar
Vincent QB committed
105
106

                # Non-batch
107
                sound = common_utils.random_float_tensor(i, data_size)
jamarshon's avatar
jamarshon committed
108
109
110
111
112
113

                stft = torch.stft(sound, **kwargs)
                estimate = torchaudio.functional.istft(stft, length=sound.size(1), **kwargs)

                self._compare_estimate(sound, estimate)

Vincent QB's avatar
Vincent QB committed
114
115
116
117
118
119
120
121
                # Batch
                stft = torch.stft(sound, **kwargs)
                stft = stft.repeat(3, 1, 1, 1, 1)
                sound = sound.repeat(3, 1, 1)

                estimate = torchaudio.functional.istft(stft, length=sound.size(1), **kwargs)
                self._compare_estimate(sound, estimate)

jamarshon's avatar
jamarshon committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
    def test_istft_is_inverse_of_stft1(self):
        # hann_window, centered, normalized, onesided
        kwargs1 = {
            'n_fft': 12,
            'hop_length': 4,
            'win_length': 12,
            'window': torch.hann_window(12),
            'center': True,
            'pad_mode': 'reflect',
            'normalized': True,
            'onesided': True,
        }

        self._test_istft_is_inverse_of_stft(kwargs1)

    def test_istft_is_inverse_of_stft2(self):
        # hann_window, centered, not normalized, not onesided
        kwargs2 = {
            'n_fft': 12,
            'hop_length': 2,
            'win_length': 8,
            'window': torch.hann_window(8),
            'center': True,
            'pad_mode': 'reflect',
            'normalized': False,
            'onesided': False,
        }

        self._test_istft_is_inverse_of_stft(kwargs2)

    def test_istft_is_inverse_of_stft3(self):
        # hamming_window, centered, normalized, not onesided
        kwargs3 = {
            'n_fft': 15,
            'hop_length': 3,
            'win_length': 11,
            'window': torch.hamming_window(11),
            'center': True,
            'pad_mode': 'constant',
            'normalized': True,
            'onesided': False,
        }

        self._test_istft_is_inverse_of_stft(kwargs3)

    def test_istft_is_inverse_of_stft4(self):
        # hamming_window, not centered, not normalized, onesided
        # window same size as n_fft
        kwargs4 = {
            'n_fft': 5,
            'hop_length': 2,
            'win_length': 5,
            'window': torch.hamming_window(5),
            'center': False,
            'pad_mode': 'constant',
            'normalized': False,
            'onesided': True,
        }

        self._test_istft_is_inverse_of_stft(kwargs4)

    def test_istft_is_inverse_of_stft5(self):
        # hamming_window, not centered, not normalized, not onesided
        # window same size as n_fft
        kwargs5 = {
            'n_fft': 3,
            'hop_length': 2,
            'win_length': 3,
            'window': torch.hamming_window(3),
            'center': False,
            'pad_mode': 'reflect',
            'normalized': False,
            'onesided': False,
        }

        self._test_istft_is_inverse_of_stft(kwargs5)

    def test_istft_of_ones(self):
        # stft = torch.stft(torch.ones(4), 4)
        stft = torch.tensor([
            [[4., 0.], [4., 0.], [4., 0.], [4., 0.], [4., 0.]],
            [[0., 0.], [0., 0.], [0., 0.], [0., 0.], [0., 0.]],
            [[0., 0.], [0., 0.], [0., 0.], [0., 0.], [0., 0.]]
        ])

        estimate = torchaudio.functional.istft(stft, n_fft=4, length=4)
        self._compare_estimate(torch.ones(4), estimate)

    def test_istft_of_zeros(self):
        # stft = torch.stft(torch.zeros(4), 4)
        stft = torch.zeros((3, 5, 2))

        estimate = torchaudio.functional.istft(stft, n_fft=4, length=4)
        self._compare_estimate(torch.zeros(4), estimate)

    def test_istft_requires_overlap_windows(self):
        # the window is size 1 but it hops 20 so there is a gap which throw an error
        stft = torch.zeros((3, 5, 2))
        self.assertRaises(AssertionError, torchaudio.functional.istft, stft, n_fft=4,
                          hop_length=20, win_length=1, window=torch.ones(1))

    def test_istft_requires_nola(self):
        stft = torch.zeros((3, 5, 2))
        kwargs_ok = {
            'n_fft': 4,
            'win_length': 4,
            'window': torch.ones(4),
        }

        kwargs_not_ok = {
            'n_fft': 4,
            'win_length': 4,
            'window': torch.zeros(4),
        }

        # A window of ones meets NOLA but a window of zeros does not. This should
        # throw an error.
        torchaudio.functional.istft(stft, **kwargs_ok)
        self.assertRaises(AssertionError, torchaudio.functional.istft, stft, **kwargs_not_ok)

    def test_istft_requires_non_empty(self):
        self.assertRaises(AssertionError, torchaudio.functional.istft, torch.zeros((3, 0, 2)), 2)
        self.assertRaises(AssertionError, torchaudio.functional.istft, torch.zeros((0, 3, 2)), 2)

    def _test_istft_of_sine(self, amplitude, L, n):
        # stft of amplitude*sin(2*pi/L*n*x) with the hop length and window size equaling L
        x = torch.arange(2 * L + 1, dtype=torch.get_default_dtype())
        sound = amplitude * torch.sin(2 * math.pi / L * x * n)
        # stft = torch.stft(sound, L, hop_length=L, win_length=L,
        #                   window=torch.ones(L), center=False, normalized=False)
        stft = torch.zeros((L // 2 + 1, 2, 2))
        stft_largest_val = (amplitude * L) / 2.0
        if n < stft.size(0):
            stft[n, :, 1] = -stft_largest_val

        if 0 <= L - n < stft.size(0):
            # symmetric about L // 2
            stft[L - n, :, 1] = stft_largest_val

        estimate = torchaudio.functional.istft(stft, L, hop_length=L, win_length=L,
                                               window=torch.ones(L), center=False, normalized=False)
        # There is a larger error due to the scaling of amplitude
        self._compare_estimate(sound, estimate, atol=1e-3)

    def test_istft_of_sine(self):
        self._test_istft_of_sine(amplitude=123, L=5, n=1)
        self._test_istft_of_sine(amplitude=150, L=5, n=2)
        self._test_istft_of_sine(amplitude=111, L=5, n=3)
        self._test_istft_of_sine(amplitude=160, L=7, n=4)
        self._test_istft_of_sine(amplitude=145, L=8, n=5)
        self._test_istft_of_sine(amplitude=80, L=9, n=6)
        self._test_istft_of_sine(amplitude=99, L=10, n=7)

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
    def _test_linearity_of_istft(self, data_size, kwargs, atol=1e-6, rtol=1e-8):
        for i in range(self.number_of_trials):
            tensor1 = common_utils.random_float_tensor(i, data_size)
            tensor2 = common_utils.random_float_tensor(i * 2, data_size)
            a, b = torch.rand(2)
            istft1 = torchaudio.functional.istft(tensor1, **kwargs)
            istft2 = torchaudio.functional.istft(tensor2, **kwargs)
            istft = a * istft1 + b * istft2
            estimate = torchaudio.functional.istft(a * tensor1 + b * tensor2, **kwargs)
            self._compare_estimate(istft, estimate, atol, rtol)

    def test_linearity_of_istft1(self):
        # hann_window, centered, normalized, onesided
        kwargs1 = {
            'n_fft': 12,
            'window': torch.hann_window(12),
            'center': True,
            'pad_mode': 'reflect',
            'normalized': True,
            'onesided': True,
        }
        data_size = (2, 7, 7, 2)
        self._test_linearity_of_istft(data_size, kwargs1)

    def test_linearity_of_istft2(self):
        # hann_window, centered, not normalized, not onesided
        kwargs2 = {
            'n_fft': 12,
            'window': torch.hann_window(12),
            'center': True,
            'pad_mode': 'reflect',
            'normalized': False,
            'onesided': False,
        }
        data_size = (2, 12, 7, 2)
        self._test_linearity_of_istft(data_size, kwargs2)

    def test_linearity_of_istft3(self):
        # hamming_window, centered, normalized, not onesided
        kwargs3 = {
            'n_fft': 12,
            'window': torch.hamming_window(12),
            'center': True,
            'pad_mode': 'constant',
            'normalized': True,
            'onesided': False,
        }
        data_size = (2, 12, 7, 2)
        self._test_linearity_of_istft(data_size, kwargs3)

    def test_linearity_of_istft4(self):
        # hamming_window, not centered, not normalized, onesided
        kwargs4 = {
            'n_fft': 12,
            'window': torch.hamming_window(12),
            'center': False,
            'pad_mode': 'constant',
            'normalized': False,
            'onesided': True,
        }
        data_size = (2, 7, 3, 2)
        self._test_linearity_of_istft(data_size, kwargs4, atol=1e-5, rtol=1e-8)

engineerchuan's avatar
engineerchuan committed
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
    def _test_create_fb(self, n_mels=40, sample_rate=22050, n_fft=2048, fmin=0.0, fmax=8000.0):
        # Using a decorator here causes parametrize to fail on Python 2
        if not IMPORT_LIBROSA:
            raise unittest.SkipTest('Librosa is not available')

        librosa_fb = librosa.filters.mel(sr=sample_rate,
                                         n_fft=n_fft,
                                         n_mels=n_mels,
                                         fmax=fmax,
                                         fmin=fmin,
                                         htk=True,
                                         norm=None)
        fb = F.create_fb_matrix(sample_rate=sample_rate,
                                n_mels=n_mels,
                                f_max=fmax,
                                f_min=fmin,
                                n_freqs=(n_fft // 2 + 1))

        for i_mel_bank in range(n_mels):
            assert torch.allclose(fb[:, i_mel_bank], torch.tensor(librosa_fb[i_mel_bank]), atol=1e-4)

    def test_create_fb(self):
        self._test_create_fb()
        self._test_create_fb(n_mels=128, sample_rate=44100)
        self._test_create_fb(n_mels=128, fmin=2000.0, fmax=5000.0)
        self._test_create_fb(n_mels=56, fmin=100.0, fmax=9000.0)
        self._test_create_fb(n_mels=56, fmin=800.0, fmax=900.0)
        self._test_create_fb(n_mels=56, fmin=1900.0, fmax=900.0)
        self._test_create_fb(n_mels=10, fmin=1900.0, fmax=900.0)

Vincent QB's avatar
Vincent QB committed
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
    def test_pitch(self):

        test_dirpath, test_dir = common_utils.create_temp_assets_dir()
        test_filepath_100 = os.path.join(test_dirpath, 'assets', "100Hz_44100Hz_16bit_05sec.wav")
        test_filepath_440 = os.path.join(test_dirpath, 'assets', "440Hz_44100Hz_16bit_05sec.wav")

        # Files from https://www.mediacollege.com/audio/tone/download/
        tests = [
            (test_filepath_100, 100),
            (test_filepath_440, 440),
        ]

        for filename, freq_ref in tests:
            waveform, sample_rate = torchaudio.load(filename)

            freq = torchaudio.functional.detect_pitch_frequency(waveform, sample_rate)

            threshold = 1
            s = ((freq - freq_ref).abs() > threshold).sum()
            self.assertFalse(s)

Vincent QB's avatar
Vincent QB committed
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
            # Convert to stereo and batch for testing purposes
            freq = freq.repeat(3, 2, 1, 1)
            waveform = waveform.repeat(3, 2, 1, 1)

            freq2 = torchaudio.functional.detect_pitch_frequency(waveform, sample_rate)

            assert torch.allclose(freq, freq2, atol=1e-5)

    def _test_batch(self, functional):
        waveform, sample_rate = torchaudio.load(self.test_filepath)  # (2, 278756), 44100

        # Single then transform then batch
        expected = functional(waveform).unsqueeze(0).repeat(3, 1, 1, 1)

        # Batch then transform
        waveform = waveform.unsqueeze(0).repeat(3, 1, 1)
        computed = functional(waveform)

jamarshon's avatar
jamarshon committed
407

408
409
410
411
412
def _num_stft_bins(signal_len, fft_len, hop_length, pad):
    return (signal_len + 2 * pad - fft_len + hop_length) // hop_length


@pytest.mark.parametrize('complex_specgrams', [
413
    torch.randn(2, 1025, 400, 2)
414
])
415
@pytest.mark.parametrize('rate', [0.5, 1.01, 1.3])
416
417
418
@pytest.mark.parametrize('hop_length', [256])
def test_phase_vocoder(complex_specgrams, rate, hop_length):

419
420
421
422
    # Using a decorator here causes parametrize to fail on Python 2
    if not IMPORT_LIBROSA:
        raise unittest.SkipTest('Librosa is not available')

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
    # Due to cummulative sum, numerical error in using torch.float32 will
    # result in bottom right values of the stretched sectrogram to not
    # match with librosa.

    complex_specgrams = complex_specgrams.type(torch.float64)
    phase_advance = torch.linspace(0, np.pi * hop_length, complex_specgrams.shape[-3], dtype=torch.float64)[..., None]

    complex_specgrams_stretch = F.phase_vocoder(complex_specgrams, rate=rate, phase_advance=phase_advance)

    # == Test shape
    expected_size = list(complex_specgrams.size())
    expected_size[-2] = int(np.ceil(expected_size[-2] / rate))

    assert complex_specgrams.dim() == complex_specgrams_stretch.dim()
    assert complex_specgrams_stretch.size() == torch.Size(expected_size)

    # == Test values
    index = [0] * (complex_specgrams.dim() - 3) + [slice(None)] * 3
    mono_complex_specgram = complex_specgrams[index].numpy()
    mono_complex_specgram = mono_complex_specgram[..., 0] + \
        mono_complex_specgram[..., 1] * 1j
    expected_complex_stretch = librosa.phase_vocoder(mono_complex_specgram,
                                                     rate=rate,
                                                     hop_length=hop_length)

    complex_stretch = complex_specgrams_stretch[index].numpy()
    complex_stretch = complex_stretch[..., 0] + 1j * complex_stretch[..., 1]

    assert np.allclose(complex_stretch, expected_complex_stretch, atol=1e-5)

453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
    def test_torchscript_create_fb_matrix(self):

        n_stft = 100
        f_min = 0.0
        f_max = 20.0
        n_mels = 10
        sample_rate = 16000

        _test_torchscript_functional(F.create_fb_matrix, n_stft, f_min, f_max, n_mels, sample_rate)

    def test_torchscript_amplitude_to_DB(self):

        spec = torch.rand((6, 201))
        multiplier = 10.0
        amin = 1e-10
        db_multiplier = 0.0
        top_db = 80.0

        _test_torchscript_functional(F.amplitude_to_DB, spec, multiplier, amin, db_multiplier, top_db)

    def test_torchscript_create_dct(self):

        n_mfcc = 40
        n_mels = 128
        norm = "ortho"

        _test_torchscript_functional(F.create_dct, n_mfcc, n_mels, norm)

    def test_torchscript_mu_law_encoding(self):

        tensor = torch.rand((1, 10))
        qc = 256

        _test_torchscript_functional(F.mu_law_encoding, tensor, qc)

    def test_torchscript_mu_law_decoding(self):

        tensor = torch.rand((1, 10))
        qc = 256

        _test_torchscript_functional(F.mu_law_decoding, tensor, qc)

    def test_torchscript_complex_norm(self):

        complex_tensor = torch.randn(1, 2, 1025, 400, 2),
        power = 2

        _test_torchscript_functional(F.complex_norm, complex_tensor, power)

    def test_mask_along_axis(self):

        specgram = torch.randn(2, 1025, 400),
        mask_param = 100
        mask_value = 30.
        axis = 2

        _test_torchscript_functional(F.mask_along_axis, specgram, mask_param, mask_value, axis)

    def test_mask_along_axis_iid(self):

        specgram = torch.randn(2, 1025, 400),
        specgrams = torch.randn(4, 2, 1025, 400),
        mask_param = 100
        mask_value = 30.
        axis = 2

        _test_torchscript_functional(F.mask_along_axis_iid, specgrams, mask_param, mask_value, axis)

521
522
523
524
525
526
527
528
529
530
531
532
533

@pytest.mark.parametrize('complex_tensor', [
    torch.randn(1, 2, 1025, 400, 2),
    torch.randn(1025, 400, 2)
])
@pytest.mark.parametrize('power', [1, 2, 0.7])
def test_complex_norm(complex_tensor, power):
    expected_norm_tensor = complex_tensor.pow(2).sum(-1).pow(power / 2)
    norm_tensor = F.complex_norm(complex_tensor, power)

    assert torch.allclose(expected_norm_tensor, norm_tensor, atol=1e-5)


534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
@pytest.mark.parametrize('specgram', [
    torch.randn(2, 1025, 400),
    torch.randn(1, 201, 100)
])
@pytest.mark.parametrize('mask_param', [100])
@pytest.mark.parametrize('mask_value', [0., 30.])
@pytest.mark.parametrize('axis', [1, 2])
def test_mask_along_axis(specgram, mask_param, mask_value, axis):

    mask_specgram = F.mask_along_axis(specgram, mask_param, mask_value, axis)

    other_axis = 1 if axis == 2 else 2

    masked_columns = (mask_specgram == mask_value).sum(other_axis)
    num_masked_columns = (masked_columns == mask_specgram.size(other_axis)).sum()
    num_masked_columns /= mask_specgram.size(0)

    assert mask_specgram.size() == specgram.size()
    assert num_masked_columns < mask_param


@pytest.mark.parametrize('specgrams', [
    torch.randn(4, 2, 1025, 400),
])
@pytest.mark.parametrize('mask_param', [100])
@pytest.mark.parametrize('mask_value', [0., 30.])
@pytest.mark.parametrize('axis', [2, 3])
def test_mask_along_axis_iid(specgrams, mask_param, mask_value, axis):

    mask_specgrams = F.mask_along_axis_iid(specgrams, mask_param, mask_value, axis)

    other_axis = 2 if axis == 3 else 3

    masked_columns = (mask_specgrams == mask_value).sum(other_axis)
    num_masked_columns = (masked_columns == mask_specgrams.size(other_axis)).sum(-1)

    assert mask_specgrams.size() == specgrams.size()
    assert (num_masked_columns < mask_param).sum() == num_masked_columns.numel()


jamarshon's avatar
jamarshon committed
574
575
if __name__ == '__main__':
    unittest.main()