test_batch_consistency.py 10.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
"""Test numerical consistency among single input and batched input."""
import unittest

import torch
import torchaudio
import torchaudio.functional as F

import common_utils


11
12
def _test_batch_consistency(functional, tensor, *args, batch_size=1, atol=1e-8, rtol=1e-5, **kwargs):
    # run then batch the result
13
14
    torch.random.manual_seed(42)
    expected = functional(tensor.clone(), *args, **kwargs)
15
    expected = expected.repeat([batch_size] + [1] * expected.dim())
16

17
    # batch the input and run
18
    torch.random.manual_seed(42)
19
20
    pattern = [batch_size] + [1] * tensor.dim()
    computed = functional(tensor.repeat(pattern), *args, **kwargs)
21

22
    torch.testing.assert_allclose(computed, expected, rtol=rtol, atol=atol)
23
24


moto's avatar
moto committed
25
def _test_batch(functional, tensor, *args, atol=1e-8, rtol=1e-5, **kwargs):
26
27
    _test_batch_consistency(functional, tensor, *args, batch_size=1, atol=atol, rtol=rtol, **kwargs)
    _test_batch_consistency(functional, tensor, *args, batch_size=3, atol=atol, rtol=rtol, **kwargs)
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54


class TestFunctional(unittest.TestCase):
    """Test functions defined in `functional` module"""
    def test_griffinlim(self):
        n_fft = 400
        ws = 400
        hop = 200
        window = torch.hann_window(ws)
        power = 2
        normalize = False
        momentum = 0.99
        n_iter = 32
        length = 1000
        tensor = torch.rand((1, 201, 6))
        _test_batch(
            F.griffinlim, tensor, window, n_fft, hop, ws, power, normalize, n_iter, momentum, length, 0, atol=5e-5
        )

    def test_detect_pitch_frequency(self):
        filenames = [
            'steam-train-whistle-daniel_simon.wav',  # 2ch 44100Hz
            # Files from https://www.mediacollege.com/audio/tone/download/
            '100Hz_44100Hz_16bit_05sec.wav',  # 1ch
            '440Hz_44100Hz_16bit_05sec.wav',  # 1ch
        ]
        for filename in filenames:
55
            filepath = common_utils.get_asset_path(filename)
56
57
58
59
60
61
62
63
64
65
            waveform, sample_rate = torchaudio.load(filepath)
            _test_batch(F.detect_pitch_frequency, waveform, sample_rate)

    def test_istft(self):
        stft = torch.tensor([
            [[4., 0.], [4., 0.], [4., 0.], [4., 0.], [4., 0.]],
            [[0., 0.], [0., 0.], [0., 0.], [0., 0.], [0., 0.]],
            [[0., 0.], [0., 0.], [0., 0.], [0., 0.], [0., 0.]]
        ])
        _test_batch(F.istft, stft, n_fft=4, length=4)
66

67
68
69
    def test_contrast(self):
        waveform = torch.rand(2, 100) - 0.5
        _test_batch(F.contrast, waveform, enhancement_amount=80.)
70
71
72
73

    def test_dcshift(self):
        waveform = torch.rand(2, 100) - 0.5
        _test_batch(F.dcshift, waveform, shift=0.5, limiter_gain=0.05)
74

75
76
77
78
    def test_overdrive(self):
        waveform = torch.rand(2, 100) - 0.5
        _test_batch(F.overdrive, waveform, gain=45, colour=30)

79
80
81
82
83
    def test_phaser(self):
        filepath = common_utils.get_asset_path("whitenoise.wav")
        waveform, sample_rate = torchaudio.load(filepath)
        _test_batch(F.phaser, waveform, sample_rate)

84
85
86
87
88
89
    def test_sliding_window_cmn(self):
        waveform = torch.randn(2, 1024) - 0.5
        _test_batch(F.sliding_window_cmn, waveform, center=True, norm_vars=True)
        _test_batch(F.sliding_window_cmn, waveform, center=True, norm_vars=False)
        _test_batch(F.sliding_window_cmn, waveform, center=False, norm_vars=True)
        _test_batch(F.sliding_window_cmn, waveform, center=False, norm_vars=False)
Artyom Astafurov's avatar
Artyom Astafurov committed
90
91

    def test_vad(self):
92
        filepath = common_utils.get_asset_path("vad-go-mono-32000.wav")
Artyom Astafurov's avatar
Artyom Astafurov committed
93
94
        waveform, sample_rate = torchaudio.load(filepath)
        _test_batch(F.vad, waveform, sample_rate=sample_rate)
95

96
97
98
99
100
101
102
103
104
105
106
107

class TestTransforms(unittest.TestCase):
    """Test suite for classes defined in `transforms` module"""
    def test_batch_AmplitudeToDB(self):
        spec = torch.rand((6, 201))

        # Single then transform then batch
        expected = torchaudio.transforms.AmplitudeToDB()(spec).repeat(3, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.AmplitudeToDB()(spec.repeat(3, 1, 1))

108
        torch.testing.assert_allclose(computed, expected)
109
110
111
112
113
114
115
116
117
118

    def test_batch_Resample(self):
        waveform = torch.randn(2, 2786)

        # Single then transform then batch
        expected = torchaudio.transforms.Resample()(waveform).repeat(3, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.Resample()(waveform.repeat(3, 1, 1))

119
        torch.testing.assert_allclose(computed, expected)
120
121
122
123
124
125
126
127
128
129
130

    def test_batch_MelScale(self):
        specgram = torch.randn(2, 31, 2786)

        # Single then transform then batch
        expected = torchaudio.transforms.MelScale()(specgram).repeat(3, 1, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.MelScale()(specgram.repeat(3, 1, 1, 1))

        # shape = (3, 2, 201, 1394)
131
        torch.testing.assert_allclose(computed, expected)
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

    def test_batch_InverseMelScale(self):
        n_mels = 32
        n_stft = 5
        mel_spec = torch.randn(2, n_mels, 32) ** 2

        # Single then transform then batch
        expected = torchaudio.transforms.InverseMelScale(n_stft, n_mels)(mel_spec).repeat(3, 1, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.InverseMelScale(n_stft, n_mels)(mel_spec.repeat(3, 1, 1, 1))

        # shape = (3, 2, n_mels, 32)

        # Because InverseMelScale runs SGD on randomly initialized values so they do not yield
        # exactly same result. For this reason, tolerance is very relaxed here.
148
        torch.testing.assert_allclose(computed, expected, atol=1.0, rtol=1e-5)
149
150
151
152
153
154
155
156
157
158
159

    def test_batch_compute_deltas(self):
        specgram = torch.randn(2, 31, 2786)

        # Single then transform then batch
        expected = torchaudio.transforms.ComputeDeltas()(specgram).repeat(3, 1, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.ComputeDeltas()(specgram.repeat(3, 1, 1, 1))

        # shape = (3, 2, 201, 1394)
160
        torch.testing.assert_allclose(computed, expected)
161
162

    def test_batch_mulaw(self):
163
        test_filepath = common_utils.get_asset_path('steam-train-whistle-daniel_simon.wav')
164
165
166
167
168
169
170
171
172
173
174
        waveform, _ = torchaudio.load(test_filepath)  # (2, 278756), 44100

        # Single then transform then batch
        waveform_encoded = torchaudio.transforms.MuLawEncoding()(waveform)
        expected = waveform_encoded.unsqueeze(0).repeat(3, 1, 1)

        # Batch then transform
        waveform_batched = waveform.unsqueeze(0).repeat(3, 1, 1)
        computed = torchaudio.transforms.MuLawEncoding()(waveform_batched)

        # shape = (3, 2, 201, 1394)
175
        torch.testing.assert_allclose(computed, expected)
176
177
178
179
180
181
182
183
184

        # Single then transform then batch
        waveform_decoded = torchaudio.transforms.MuLawDecoding()(waveform_encoded)
        expected = waveform_decoded.unsqueeze(0).repeat(3, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.MuLawDecoding()(computed)

        # shape = (3, 2, 201, 1394)
185
        torch.testing.assert_allclose(computed, expected)
186
187

    def test_batch_spectrogram(self):
188
        test_filepath = common_utils.get_asset_path('steam-train-whistle-daniel_simon.wav')
189
190
191
192
193
194
195
        waveform, _ = torchaudio.load(test_filepath)  # (2, 278756), 44100

        # Single then transform then batch
        expected = torchaudio.transforms.Spectrogram()(waveform).repeat(3, 1, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.Spectrogram()(waveform.repeat(3, 1, 1))
196
        torch.testing.assert_allclose(computed, expected)
197
198

    def test_batch_melspectrogram(self):
199
        test_filepath = common_utils.get_asset_path('steam-train-whistle-daniel_simon.wav')
200
201
202
203
204
205
206
        waveform, _ = torchaudio.load(test_filepath)  # (2, 278756), 44100

        # Single then transform then batch
        expected = torchaudio.transforms.MelSpectrogram()(waveform).repeat(3, 1, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.MelSpectrogram()(waveform.repeat(3, 1, 1))
207
        torch.testing.assert_allclose(computed, expected)
208
209

    def test_batch_mfcc(self):
moto's avatar
moto committed
210
        test_filepath = common_utils.get_asset_path('steam-train-whistle-daniel_simon.wav')
211
212
213
214
215
216
217
        waveform, _ = torchaudio.load(test_filepath)

        # Single then transform then batch
        expected = torchaudio.transforms.MFCC()(waveform).repeat(3, 1, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.MFCC()(waveform.repeat(3, 1, 1))
218
        torch.testing.assert_allclose(computed, expected, atol=1e-5, rtol=1e-5)
219
220

    def test_batch_TimeStretch(self):
221
        test_filepath = common_utils.get_asset_path('steam-train-whistle-daniel_simon.wav')
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
        waveform, _ = torchaudio.load(test_filepath)  # (2, 278756), 44100

        kwargs = {
            'n_fft': 2048,
            'hop_length': 512,
            'win_length': 2048,
            'window': torch.hann_window(2048),
            'center': True,
            'pad_mode': 'reflect',
            'normalized': True,
            'onesided': True,
        }
        rate = 2

        complex_specgrams = torch.stft(waveform, **kwargs)

        # Single then transform then batch
        expected = torchaudio.transforms.TimeStretch(
            fixed_rate=rate,
            n_freq=1025,
            hop_length=512,
        )(complex_specgrams).repeat(3, 1, 1, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.TimeStretch(
            fixed_rate=rate,
            n_freq=1025,
            hop_length=512,
        )(complex_specgrams.repeat(3, 1, 1, 1, 1))

252
        torch.testing.assert_allclose(computed, expected, atol=1e-5, rtol=1e-5)
253
254

    def test_batch_Fade(self):
255
        test_filepath = common_utils.get_asset_path('steam-train-whistle-daniel_simon.wav')
256
257
258
259
260
261
262
263
264
        waveform, _ = torchaudio.load(test_filepath)  # (2, 278756), 44100
        fade_in_len = 3000
        fade_out_len = 3000

        # Single then transform then batch
        expected = torchaudio.transforms.Fade(fade_in_len, fade_out_len)(waveform).repeat(3, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.Fade(fade_in_len, fade_out_len)(waveform.repeat(3, 1, 1))
265
        torch.testing.assert_allclose(computed, expected)
266
267

    def test_batch_Vol(self):
268
        test_filepath = common_utils.get_asset_path('steam-train-whistle-daniel_simon.wav')
269
270
271
272
273
274
275
        waveform, _ = torchaudio.load(test_filepath)  # (2, 278756), 44100

        # Single then transform then batch
        expected = torchaudio.transforms.Vol(gain=1.1)(waveform).repeat(3, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.Vol(gain=1.1)(waveform.repeat(3, 1, 1))
276
        torch.testing.assert_allclose(computed, expected)
Vincent QB's avatar
Vincent QB committed
277
278
279
280


if __name__ == '__main__':
    unittest.main()