test_batch_consistency.py 10 KB
Newer Older
1
2
3
4
5
6
7
8
9
"""Test numerical consistency among single input and batched input."""
import os
import unittest

import torch
import torchaudio
import torchaudio.functional as F

import common_utils
10
from common_utils import AudioBackendScope, BACKENDS
11
12


moto's avatar
moto committed
13
def _test_batch_shape(functional, tensor, *args, atol=1e-8, rtol=1e-5, **kwargs):
14
15
16
17
18
19
20
21
22
23
24
25
    # Single then transform then batch

    torch.random.manual_seed(42)
    expected = functional(tensor.clone(), *args, **kwargs)
    expected = expected.unsqueeze(0).unsqueeze(0)

    # 1-Batch then transform
    tensors = tensor.unsqueeze(0).unsqueeze(0)

    torch.random.manual_seed(42)
    computed = functional(tensors.clone(), *args, **kwargs)

26
    torch.testing.assert_allclose(computed, expected, rtol=rtol, atol=atol)
27
28
29
30

    return tensors, expected


moto's avatar
moto committed
31
32
def _test_batch(functional, tensor, *args, atol=1e-8, rtol=1e-5, **kwargs):
    tensors, expected = _test_batch_shape(functional, tensor, *args, atol=atol, rtol=rtol, **kwargs)
33
34
35
36
37
38
39
40
41
42

    # 3-Batch then transform

    ind = [3] + [1] * (int(tensors.dim()) - 1)
    tensors = tensor.repeat(*ind)

    ind = [3] + [1] * (int(expected.dim()) - 1)
    expected = expected.repeat(*ind)

    torch.random.manual_seed(42)
43
44
    computed = functional(tensors.clone(), *args, **kwargs)

45
    torch.testing.assert_allclose(computed, expected, rtol=rtol, atol=atol)
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83


class TestFunctional(unittest.TestCase):
    """Test functions defined in `functional` module"""
    def test_griffinlim(self):
        n_fft = 400
        ws = 400
        hop = 200
        window = torch.hann_window(ws)
        power = 2
        normalize = False
        momentum = 0.99
        n_iter = 32
        length = 1000
        tensor = torch.rand((1, 201, 6))
        _test_batch(
            F.griffinlim, tensor, window, n_fft, hop, ws, power, normalize, n_iter, momentum, length, 0, atol=5e-5
        )

    def test_detect_pitch_frequency(self):
        filenames = [
            'steam-train-whistle-daniel_simon.wav',  # 2ch 44100Hz
            # Files from https://www.mediacollege.com/audio/tone/download/
            '100Hz_44100Hz_16bit_05sec.wav',  # 1ch
            '440Hz_44100Hz_16bit_05sec.wav',  # 1ch
        ]
        for filename in filenames:
            filepath = os.path.join(common_utils.TEST_DIR_PATH, 'assets', filename)
            waveform, sample_rate = torchaudio.load(filepath)
            _test_batch(F.detect_pitch_frequency, waveform, sample_rate)

    def test_istft(self):
        stft = torch.tensor([
            [[4., 0.], [4., 0.], [4., 0.], [4., 0.], [4., 0.]],
            [[0., 0.], [0., 0.], [0., 0.], [0., 0.], [0., 0.]],
            [[0., 0.], [0., 0.], [0., 0.], [0., 0.], [0., 0.]]
        ])
        _test_batch(F.istft, stft, n_fft=4, length=4)
84
85
86
87
88
89
90
91
92
93
94
95
96


class TestTransforms(unittest.TestCase):
    """Test suite for classes defined in `transforms` module"""
    def test_batch_AmplitudeToDB(self):
        spec = torch.rand((6, 201))

        # Single then transform then batch
        expected = torchaudio.transforms.AmplitudeToDB()(spec).repeat(3, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.AmplitudeToDB()(spec.repeat(3, 1, 1))

97
        torch.testing.assert_allclose(computed, expected)
98
99
100
101
102
103
104
105
106
107

    def test_batch_Resample(self):
        waveform = torch.randn(2, 2786)

        # Single then transform then batch
        expected = torchaudio.transforms.Resample()(waveform).repeat(3, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.Resample()(waveform.repeat(3, 1, 1))

108
        torch.testing.assert_allclose(computed, expected)
109
110
111
112
113
114
115
116
117
118
119

    def test_batch_MelScale(self):
        specgram = torch.randn(2, 31, 2786)

        # Single then transform then batch
        expected = torchaudio.transforms.MelScale()(specgram).repeat(3, 1, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.MelScale()(specgram.repeat(3, 1, 1, 1))

        # shape = (3, 2, 201, 1394)
120
        torch.testing.assert_allclose(computed, expected)
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

    def test_batch_InverseMelScale(self):
        n_mels = 32
        n_stft = 5
        mel_spec = torch.randn(2, n_mels, 32) ** 2

        # Single then transform then batch
        expected = torchaudio.transforms.InverseMelScale(n_stft, n_mels)(mel_spec).repeat(3, 1, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.InverseMelScale(n_stft, n_mels)(mel_spec.repeat(3, 1, 1, 1))

        # shape = (3, 2, n_mels, 32)

        # Because InverseMelScale runs SGD on randomly initialized values so they do not yield
        # exactly same result. For this reason, tolerance is very relaxed here.
137
        torch.testing.assert_allclose(computed, expected, atol=1.0, rtol=1e-5)
138
139
140
141
142
143
144
145
146
147
148

    def test_batch_compute_deltas(self):
        specgram = torch.randn(2, 31, 2786)

        # Single then transform then batch
        expected = torchaudio.transforms.ComputeDeltas()(specgram).repeat(3, 1, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.ComputeDeltas()(specgram.repeat(3, 1, 1, 1))

        # shape = (3, 2, 201, 1394)
149
        torch.testing.assert_allclose(computed, expected)
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

    def test_batch_mulaw(self):
        test_filepath = os.path.join(
            common_utils.TEST_DIR_PATH, 'assets', 'steam-train-whistle-daniel_simon.wav')
        waveform, _ = torchaudio.load(test_filepath)  # (2, 278756), 44100

        # Single then transform then batch
        waveform_encoded = torchaudio.transforms.MuLawEncoding()(waveform)
        expected = waveform_encoded.unsqueeze(0).repeat(3, 1, 1)

        # Batch then transform
        waveform_batched = waveform.unsqueeze(0).repeat(3, 1, 1)
        computed = torchaudio.transforms.MuLawEncoding()(waveform_batched)

        # shape = (3, 2, 201, 1394)
165
        torch.testing.assert_allclose(computed, expected)
166
167
168
169
170
171
172
173
174

        # Single then transform then batch
        waveform_decoded = torchaudio.transforms.MuLawDecoding()(waveform_encoded)
        expected = waveform_decoded.unsqueeze(0).repeat(3, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.MuLawDecoding()(computed)

        # shape = (3, 2, 201, 1394)
175
        torch.testing.assert_allclose(computed, expected)
176
177
178
179
180
181
182
183
184
185
186

    def test_batch_spectrogram(self):
        test_filepath = os.path.join(
            common_utils.TEST_DIR_PATH, 'assets', 'steam-train-whistle-daniel_simon.wav')
        waveform, _ = torchaudio.load(test_filepath)  # (2, 278756), 44100

        # Single then transform then batch
        expected = torchaudio.transforms.Spectrogram()(waveform).repeat(3, 1, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.Spectrogram()(waveform.repeat(3, 1, 1))
187
        torch.testing.assert_allclose(computed, expected)
188
189
190
191
192
193
194
195
196
197
198

    def test_batch_melspectrogram(self):
        test_filepath = os.path.join(
            common_utils.TEST_DIR_PATH, 'assets', 'steam-train-whistle-daniel_simon.wav')
        waveform, _ = torchaudio.load(test_filepath)  # (2, 278756), 44100

        # Single then transform then batch
        expected = torchaudio.transforms.MelSpectrogram()(waveform).repeat(3, 1, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.MelSpectrogram()(waveform.repeat(3, 1, 1))
199
        torch.testing.assert_allclose(computed, expected)
200
201
202
203
204
205
206
207
208
209
210
211
212

    @unittest.skipIf("sox" not in BACKENDS, "sox not available")
    @AudioBackendScope("sox")
    def test_batch_mfcc(self):
        test_filepath = os.path.join(
            common_utils.TEST_DIR_PATH, 'assets', 'steam-train-whistle-daniel_simon.mp3')
        waveform, _ = torchaudio.load(test_filepath)

        # Single then transform then batch
        expected = torchaudio.transforms.MFCC()(waveform).repeat(3, 1, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.MFCC()(waveform.repeat(3, 1, 1))
213
        torch.testing.assert_allclose(computed, expected, atol=1e-5, rtol=1e-5)
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

    def test_batch_TimeStretch(self):
        test_filepath = os.path.join(
            common_utils.TEST_DIR_PATH, 'assets', 'steam-train-whistle-daniel_simon.wav')
        waveform, _ = torchaudio.load(test_filepath)  # (2, 278756), 44100

        kwargs = {
            'n_fft': 2048,
            'hop_length': 512,
            'win_length': 2048,
            'window': torch.hann_window(2048),
            'center': True,
            'pad_mode': 'reflect',
            'normalized': True,
            'onesided': True,
        }
        rate = 2

        complex_specgrams = torch.stft(waveform, **kwargs)

        # Single then transform then batch
        expected = torchaudio.transforms.TimeStretch(
            fixed_rate=rate,
            n_freq=1025,
            hop_length=512,
        )(complex_specgrams).repeat(3, 1, 1, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.TimeStretch(
            fixed_rate=rate,
            n_freq=1025,
            hop_length=512,
        )(complex_specgrams.repeat(3, 1, 1, 1, 1))

248
        torch.testing.assert_allclose(computed, expected, atol=1e-5, rtol=1e-5)
249
250
251
252
253
254
255
256
257
258
259
260
261

    def test_batch_Fade(self):
        test_filepath = os.path.join(
            common_utils.TEST_DIR_PATH, 'assets', 'steam-train-whistle-daniel_simon.wav')
        waveform, _ = torchaudio.load(test_filepath)  # (2, 278756), 44100
        fade_in_len = 3000
        fade_out_len = 3000

        # Single then transform then batch
        expected = torchaudio.transforms.Fade(fade_in_len, fade_out_len)(waveform).repeat(3, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.Fade(fade_in_len, fade_out_len)(waveform.repeat(3, 1, 1))
262
        torch.testing.assert_allclose(computed, expected)
263
264
265
266
267
268
269
270
271
272
273

    def test_batch_Vol(self):
        test_filepath = os.path.join(
            common_utils.TEST_DIR_PATH, 'assets', 'steam-train-whistle-daniel_simon.wav')
        waveform, _ = torchaudio.load(test_filepath)  # (2, 278756), 44100

        # Single then transform then batch
        expected = torchaudio.transforms.Vol(gain=1.1)(waveform).repeat(3, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.Vol(gain=1.1)(waveform.repeat(3, 1, 1))
274
        torch.testing.assert_allclose(computed, expected)
Vincent QB's avatar
Vincent QB committed
275
276
277
278


if __name__ == '__main__':
    unittest.main()