test_functional.py 13.7 KB
Newer Older
jamarshon's avatar
jamarshon committed
1
import math
Vincent QB's avatar
Vincent QB committed
2
import os
3
import unittest
jamarshon's avatar
jamarshon committed
4
5
6

import torch
import torchaudio
7
8
import torchaudio.functional as F
import pytest
jamarshon's avatar
jamarshon committed
9

10
import common_utils
11

jamarshon's avatar
jamarshon committed
12

moto's avatar
moto committed
13
14
15
16
17
18
19
20
class TestComputeDeltas(unittest.TestCase):
    """Test suite for correctness of compute_deltas"""
    def test_one_channel(self):
        specgram = torch.tensor([[[1.0, 2.0, 3.0, 4.0]]])
        expected = torch.tensor([[[0.5, 1.0, 1.0, 0.5]]])
        computed = F.compute_deltas(specgram, win_length=3)
        assert computed.shape == expected.shape, (computed.shape, expected.shape)
        assert torch.allclose(computed, expected)
Vincent QB's avatar
Vincent QB committed
21

moto's avatar
moto committed
22
23
24
25
26
27
28
29
    def test_two_channels(self):
        specgram = torch.tensor([[[1.0, 2.0, 3.0, 4.0],
                                  [1.0, 2.0, 3.0, 4.0]]])
        expected = torch.tensor([[[0.5, 1.0, 1.0, 0.5],
                                  [0.5, 1.0, 1.0, 0.5]]])
        computed = F.compute_deltas(specgram, win_length=3)
        assert computed.shape == expected.shape, (computed.shape, expected.shape)
        assert torch.allclose(computed, expected)
30

Vincent QB's avatar
Vincent QB committed
31

moto's avatar
moto committed
32
33
34
def _compare_estimate(sound, estimate, atol=1e-6, rtol=1e-8):
    # trim sound for case when constructed signal is shorter than original
    sound = sound[..., :estimate.size(-1)]
Vincent QB's avatar
Vincent QB committed
35

moto's avatar
moto committed
36
37
    assert sound.shape == estimate.shape, (sound.shape, estimate.shape)
    assert torch.allclose(sound, estimate, atol=atol, rtol=rtol)
Vincent QB's avatar
Vincent QB committed
38
39


moto's avatar
moto committed
40
41
42
43
44
def _test_istft_is_inverse_of_stft(kwargs):
    # generates a random sound signal for each tril and then does the stft/istft
    # operation to check whether we can reconstruct signal
    for data_size in [(2, 20), (3, 15), (4, 10)]:
        for i in range(100):
jamarshon's avatar
jamarshon committed
45

moto's avatar
moto committed
46
            sound = common_utils.random_float_tensor(i, data_size)
jamarshon's avatar
jamarshon committed
47

moto's avatar
moto committed
48
49
            stft = torch.stft(sound, **kwargs)
            estimate = torchaudio.functional.istft(stft, length=sound.size(1), **kwargs)
Vincent QB's avatar
Vincent QB committed
50

moto's avatar
moto committed
51
            _compare_estimate(sound, estimate)
jamarshon's avatar
jamarshon committed
52
53


moto's avatar
moto committed
54
55
56
class TestIstft(unittest.TestCase):
    """Test suite for correctness of istft with various input"""
    number_of_trials = 100
jamarshon's avatar
jamarshon committed
57
58
59
60
61
62
63
64
65
66
67
68
69

    def test_istft_is_inverse_of_stft1(self):
        # hann_window, centered, normalized, onesided
        kwargs1 = {
            'n_fft': 12,
            'hop_length': 4,
            'win_length': 12,
            'window': torch.hann_window(12),
            'center': True,
            'pad_mode': 'reflect',
            'normalized': True,
            'onesided': True,
        }
moto's avatar
moto committed
70
        _test_istft_is_inverse_of_stft(kwargs1)
jamarshon's avatar
jamarshon committed
71
72
73
74
75
76
77
78
79
80
81
82
83

    def test_istft_is_inverse_of_stft2(self):
        # hann_window, centered, not normalized, not onesided
        kwargs2 = {
            'n_fft': 12,
            'hop_length': 2,
            'win_length': 8,
            'window': torch.hann_window(8),
            'center': True,
            'pad_mode': 'reflect',
            'normalized': False,
            'onesided': False,
        }
moto's avatar
moto committed
84
        _test_istft_is_inverse_of_stft(kwargs2)
jamarshon's avatar
jamarshon committed
85
86
87
88
89
90
91
92
93
94
95
96
97

    def test_istft_is_inverse_of_stft3(self):
        # hamming_window, centered, normalized, not onesided
        kwargs3 = {
            'n_fft': 15,
            'hop_length': 3,
            'win_length': 11,
            'window': torch.hamming_window(11),
            'center': True,
            'pad_mode': 'constant',
            'normalized': True,
            'onesided': False,
        }
moto's avatar
moto committed
98
        _test_istft_is_inverse_of_stft(kwargs3)
jamarshon's avatar
jamarshon committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112

    def test_istft_is_inverse_of_stft4(self):
        # hamming_window, not centered, not normalized, onesided
        # window same size as n_fft
        kwargs4 = {
            'n_fft': 5,
            'hop_length': 2,
            'win_length': 5,
            'window': torch.hamming_window(5),
            'center': False,
            'pad_mode': 'constant',
            'normalized': False,
            'onesided': True,
        }
moto's avatar
moto committed
113
        _test_istft_is_inverse_of_stft(kwargs4)
jamarshon's avatar
jamarshon committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127

    def test_istft_is_inverse_of_stft5(self):
        # hamming_window, not centered, not normalized, not onesided
        # window same size as n_fft
        kwargs5 = {
            'n_fft': 3,
            'hop_length': 2,
            'win_length': 3,
            'window': torch.hamming_window(3),
            'center': False,
            'pad_mode': 'reflect',
            'normalized': False,
            'onesided': False,
        }
moto's avatar
moto committed
128
        _test_istft_is_inverse_of_stft(kwargs5)
jamarshon's avatar
jamarshon committed
129
130
131
132
133
134
135
136
137
138

    def test_istft_of_ones(self):
        # stft = torch.stft(torch.ones(4), 4)
        stft = torch.tensor([
            [[4., 0.], [4., 0.], [4., 0.], [4., 0.], [4., 0.]],
            [[0., 0.], [0., 0.], [0., 0.], [0., 0.], [0., 0.]],
            [[0., 0.], [0., 0.], [0., 0.], [0., 0.], [0., 0.]]
        ])

        estimate = torchaudio.functional.istft(stft, n_fft=4, length=4)
moto's avatar
moto committed
139
        _compare_estimate(torch.ones(4), estimate)
jamarshon's avatar
jamarshon committed
140
141
142
143
144
145

    def test_istft_of_zeros(self):
        # stft = torch.stft(torch.zeros(4), 4)
        stft = torch.zeros((3, 5, 2))

        estimate = torchaudio.functional.istft(stft, n_fft=4, length=4)
moto's avatar
moto committed
146
        _compare_estimate(torch.zeros(4), estimate)
jamarshon's avatar
jamarshon committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

    def test_istft_requires_overlap_windows(self):
        # the window is size 1 but it hops 20 so there is a gap which throw an error
        stft = torch.zeros((3, 5, 2))
        self.assertRaises(AssertionError, torchaudio.functional.istft, stft, n_fft=4,
                          hop_length=20, win_length=1, window=torch.ones(1))

    def test_istft_requires_nola(self):
        stft = torch.zeros((3, 5, 2))
        kwargs_ok = {
            'n_fft': 4,
            'win_length': 4,
            'window': torch.ones(4),
        }

        kwargs_not_ok = {
            'n_fft': 4,
            'win_length': 4,
            'window': torch.zeros(4),
        }

        # A window of ones meets NOLA but a window of zeros does not. This should
        # throw an error.
        torchaudio.functional.istft(stft, **kwargs_ok)
        self.assertRaises(AssertionError, torchaudio.functional.istft, stft, **kwargs_not_ok)

    def test_istft_requires_non_empty(self):
        self.assertRaises(AssertionError, torchaudio.functional.istft, torch.zeros((3, 0, 2)), 2)
        self.assertRaises(AssertionError, torchaudio.functional.istft, torch.zeros((0, 3, 2)), 2)

    def _test_istft_of_sine(self, amplitude, L, n):
        # stft of amplitude*sin(2*pi/L*n*x) with the hop length and window size equaling L
        x = torch.arange(2 * L + 1, dtype=torch.get_default_dtype())
        sound = amplitude * torch.sin(2 * math.pi / L * x * n)
        # stft = torch.stft(sound, L, hop_length=L, win_length=L,
        #                   window=torch.ones(L), center=False, normalized=False)
        stft = torch.zeros((L // 2 + 1, 2, 2))
        stft_largest_val = (amplitude * L) / 2.0
        if n < stft.size(0):
            stft[n, :, 1] = -stft_largest_val

        if 0 <= L - n < stft.size(0):
            # symmetric about L // 2
            stft[L - n, :, 1] = stft_largest_val

        estimate = torchaudio.functional.istft(stft, L, hop_length=L, win_length=L,
                                               window=torch.ones(L), center=False, normalized=False)
        # There is a larger error due to the scaling of amplitude
moto's avatar
moto committed
195
        _compare_estimate(sound, estimate, atol=1e-3)
jamarshon's avatar
jamarshon committed
196
197
198
199
200
201
202
203
204
205

    def test_istft_of_sine(self):
        self._test_istft_of_sine(amplitude=123, L=5, n=1)
        self._test_istft_of_sine(amplitude=150, L=5, n=2)
        self._test_istft_of_sine(amplitude=111, L=5, n=3)
        self._test_istft_of_sine(amplitude=160, L=7, n=4)
        self._test_istft_of_sine(amplitude=145, L=8, n=5)
        self._test_istft_of_sine(amplitude=80, L=9, n=6)
        self._test_istft_of_sine(amplitude=99, L=10, n=7)

206
207
208
209
210
211
212
213
214
    def _test_linearity_of_istft(self, data_size, kwargs, atol=1e-6, rtol=1e-8):
        for i in range(self.number_of_trials):
            tensor1 = common_utils.random_float_tensor(i, data_size)
            tensor2 = common_utils.random_float_tensor(i * 2, data_size)
            a, b = torch.rand(2)
            istft1 = torchaudio.functional.istft(tensor1, **kwargs)
            istft2 = torchaudio.functional.istft(tensor2, **kwargs)
            istft = a * istft1 + b * istft2
            estimate = torchaudio.functional.istft(a * tensor1 + b * tensor2, **kwargs)
moto's avatar
moto committed
215
            _compare_estimate(istft, estimate, atol, rtol)
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

    def test_linearity_of_istft1(self):
        # hann_window, centered, normalized, onesided
        kwargs1 = {
            'n_fft': 12,
            'window': torch.hann_window(12),
            'center': True,
            'pad_mode': 'reflect',
            'normalized': True,
            'onesided': True,
        }
        data_size = (2, 7, 7, 2)
        self._test_linearity_of_istft(data_size, kwargs1)

    def test_linearity_of_istft2(self):
        # hann_window, centered, not normalized, not onesided
        kwargs2 = {
            'n_fft': 12,
            'window': torch.hann_window(12),
            'center': True,
            'pad_mode': 'reflect',
            'normalized': False,
            'onesided': False,
        }
        data_size = (2, 12, 7, 2)
        self._test_linearity_of_istft(data_size, kwargs2)

    def test_linearity_of_istft3(self):
        # hamming_window, centered, normalized, not onesided
        kwargs3 = {
            'n_fft': 12,
            'window': torch.hamming_window(12),
            'center': True,
            'pad_mode': 'constant',
            'normalized': True,
            'onesided': False,
        }
        data_size = (2, 12, 7, 2)
        self._test_linearity_of_istft(data_size, kwargs3)

    def test_linearity_of_istft4(self):
        # hamming_window, not centered, not normalized, onesided
        kwargs4 = {
            'n_fft': 12,
            'window': torch.hamming_window(12),
            'center': False,
            'pad_mode': 'constant',
            'normalized': False,
            'onesided': True,
        }
        data_size = (2, 7, 3, 2)
        self._test_linearity_of_istft(data_size, kwargs4, atol=1e-5, rtol=1e-8)

moto's avatar
moto committed
269
270

class TestDetectPitchFrequency(unittest.TestCase):
271
    def test_pitch(self):
moto's avatar
moto committed
272
273
274
275
        test_filepath_100 = os.path.join(
            common_utils.TEST_DIR_PATH, 'assets', "100Hz_44100Hz_16bit_05sec.wav")
        test_filepath_440 = os.path.join(
            common_utils.TEST_DIR_PATH, 'assets', "440Hz_44100Hz_16bit_05sec.wav")
Vincent QB's avatar
Vincent QB committed
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

        # Files from https://www.mediacollege.com/audio/tone/download/
        tests = [
            (test_filepath_100, 100),
            (test_filepath_440, 440),
        ]

        for filename, freq_ref in tests:
            waveform, sample_rate = torchaudio.load(filename)

            freq = torchaudio.functional.detect_pitch_frequency(waveform, sample_rate)

            threshold = 1
            s = ((freq - freq_ref).abs() > threshold).sum()
            self.assertFalse(s)

moto's avatar
moto committed
292
293

class TestDB_to_amplitude(unittest.TestCase):
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
    def test_DB_to_amplitude(self):
        # Make some noise
        x = torch.rand(1000)
        spectrogram = torchaudio.transforms.Spectrogram()
        spec = spectrogram(x)

        amin = 1e-10
        ref = 1.0
        db_multiplier = math.log10(max(amin, ref))

        # Waveform amplitude -> DB -> amplitude
        multiplier = 20.
        power = 0.5

        db = F.amplitude_to_DB(torch.abs(x), multiplier, amin, db_multiplier, top_db=None)
        x2 = F.DB_to_amplitude(db, ref, power)

        self.assertTrue(torch.allclose(torch.abs(x), x2, atol=5e-5))

        # Spectrogram amplitude -> DB -> amplitude
        db = F.amplitude_to_DB(spec, multiplier, amin, db_multiplier, top_db=None)
        x2 = F.DB_to_amplitude(db, ref, power)

        self.assertTrue(torch.allclose(spec, x2, atol=5e-5))

        # Waveform power -> DB -> power
        multiplier = 10.
        power = 1.

        db = F.amplitude_to_DB(x, multiplier, amin, db_multiplier, top_db=None)
        x2 = F.DB_to_amplitude(db, ref, power)

        self.assertTrue(torch.allclose(torch.abs(x), x2, atol=5e-5))

        # Spectrogram power -> DB -> power
        db = F.amplitude_to_DB(spec, multiplier, amin, db_multiplier, top_db=None)
        x2 = F.DB_to_amplitude(db, ref, power)

        self.assertTrue(torch.allclose(spec, x2, atol=5e-5))

334
335
336
337
338
339
340
341
342
343
344
345
346

@pytest.mark.parametrize('complex_tensor', [
    torch.randn(1, 2, 1025, 400, 2),
    torch.randn(1025, 400, 2)
])
@pytest.mark.parametrize('power', [1, 2, 0.7])
def test_complex_norm(complex_tensor, power):
    expected_norm_tensor = complex_tensor.pow(2).sum(-1).pow(power / 2)
    norm_tensor = F.complex_norm(complex_tensor, power)

    assert torch.allclose(expected_norm_tensor, norm_tensor, atol=1e-5)


347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
@pytest.mark.parametrize('specgram', [
    torch.randn(2, 1025, 400),
    torch.randn(1, 201, 100)
])
@pytest.mark.parametrize('mask_param', [100])
@pytest.mark.parametrize('mask_value', [0., 30.])
@pytest.mark.parametrize('axis', [1, 2])
def test_mask_along_axis(specgram, mask_param, mask_value, axis):

    mask_specgram = F.mask_along_axis(specgram, mask_param, mask_value, axis)

    other_axis = 1 if axis == 2 else 2

    masked_columns = (mask_specgram == mask_value).sum(other_axis)
    num_masked_columns = (masked_columns == mask_specgram.size(other_axis)).sum()
    num_masked_columns /= mask_specgram.size(0)

    assert mask_specgram.size() == specgram.size()
    assert num_masked_columns < mask_param


@pytest.mark.parametrize('specgrams', [
    torch.randn(4, 2, 1025, 400),
])
@pytest.mark.parametrize('mask_param', [100])
@pytest.mark.parametrize('mask_value', [0., 30.])
@pytest.mark.parametrize('axis', [2, 3])
def test_mask_along_axis_iid(specgrams, mask_param, mask_value, axis):

    mask_specgrams = F.mask_along_axis_iid(specgrams, mask_param, mask_value, axis)

    other_axis = 2 if axis == 3 else 3

    masked_columns = (mask_specgrams == mask_value).sum(other_axis)
    num_masked_columns = (masked_columns == mask_specgrams.size(other_axis)).sum(-1)

    assert mask_specgrams.size() == specgrams.size()
    assert (num_masked_columns < mask_param).sum() == num_masked_columns.numel()


jamarshon's avatar
jamarshon committed
387
388
if __name__ == '__main__':
    unittest.main()