test_batch_consistency.py 10.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
"""Test numerical consistency among single input and batched input."""
import unittest

import torch
import torchaudio
import torchaudio.functional as F

import common_utils


11
12
def _test_batch_consistency(functional, tensor, *args, batch_size=1, atol=1e-8, rtol=1e-5, **kwargs):
    # run then batch the result
13
14
    torch.random.manual_seed(42)
    expected = functional(tensor.clone(), *args, **kwargs)
15
    expected = expected.repeat([batch_size] + [1] * expected.dim())
16

17
    # batch the input and run
18
    torch.random.manual_seed(42)
19
20
    pattern = [batch_size] + [1] * tensor.dim()
    computed = functional(tensor.repeat(pattern), *args, **kwargs)
21

22
    torch.testing.assert_allclose(computed, expected, rtol=rtol, atol=atol)
23
24


moto's avatar
moto committed
25
def _test_batch(functional, tensor, *args, atol=1e-8, rtol=1e-5, **kwargs):
26
27
    _test_batch_consistency(functional, tensor, *args, batch_size=1, atol=atol, rtol=rtol, **kwargs)
    _test_batch_consistency(functional, tensor, *args, batch_size=3, atol=atol, rtol=rtol, **kwargs)
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54


class TestFunctional(unittest.TestCase):
    """Test functions defined in `functional` module"""
    def test_griffinlim(self):
        n_fft = 400
        ws = 400
        hop = 200
        window = torch.hann_window(ws)
        power = 2
        normalize = False
        momentum = 0.99
        n_iter = 32
        length = 1000
        tensor = torch.rand((1, 201, 6))
        _test_batch(
            F.griffinlim, tensor, window, n_fft, hop, ws, power, normalize, n_iter, momentum, length, 0, atol=5e-5
        )

    def test_detect_pitch_frequency(self):
        filenames = [
            'steam-train-whistle-daniel_simon.wav',  # 2ch 44100Hz
            # Files from https://www.mediacollege.com/audio/tone/download/
            '100Hz_44100Hz_16bit_05sec.wav',  # 1ch
            '440Hz_44100Hz_16bit_05sec.wav',  # 1ch
        ]
        for filename in filenames:
55
            filepath = common_utils.get_asset_path(filename)
56
57
58
59
60
61
62
63
64
65
            waveform, sample_rate = torchaudio.load(filepath)
            _test_batch(F.detect_pitch_frequency, waveform, sample_rate)

    def test_istft(self):
        stft = torch.tensor([
            [[4., 0.], [4., 0.], [4., 0.], [4., 0.], [4., 0.]],
            [[0., 0.], [0., 0.], [0., 0.], [0., 0.], [0., 0.]],
            [[0., 0.], [0., 0.], [0., 0.], [0., 0.], [0., 0.]]
        ])
        _test_batch(F.istft, stft, n_fft=4, length=4)
66

67
68
69
    def test_contrast(self):
        waveform = torch.rand(2, 100) - 0.5
        _test_batch(F.contrast, waveform, enhancement_amount=80.)
70
71
72
73

    def test_dcshift(self):
        waveform = torch.rand(2, 100) - 0.5
        _test_batch(F.dcshift, waveform, shift=0.5, limiter_gain=0.05)
74

75
76
77
78
    def test_overdrive(self):
        waveform = torch.rand(2, 100) - 0.5
        _test_batch(F.overdrive, waveform, gain=45, colour=30)

79
80
81
82
83
84
    def test_sliding_window_cmn(self):
        waveform = torch.randn(2, 1024) - 0.5
        _test_batch(F.sliding_window_cmn, waveform, center=True, norm_vars=True)
        _test_batch(F.sliding_window_cmn, waveform, center=True, norm_vars=False)
        _test_batch(F.sliding_window_cmn, waveform, center=False, norm_vars=True)
        _test_batch(F.sliding_window_cmn, waveform, center=False, norm_vars=False)
Artyom Astafurov's avatar
Artyom Astafurov committed
85
86
87
88
89

    def test_vad(self):
        filepath = common_utils.get_asset_path("vad-hello-mono-32000.wav")
        waveform, sample_rate = torchaudio.load(filepath)
        _test_batch(F.vad, waveform, sample_rate=sample_rate)
90

91
92
93
94
95
96
97
98
99
100
101
102

class TestTransforms(unittest.TestCase):
    """Test suite for classes defined in `transforms` module"""
    def test_batch_AmplitudeToDB(self):
        spec = torch.rand((6, 201))

        # Single then transform then batch
        expected = torchaudio.transforms.AmplitudeToDB()(spec).repeat(3, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.AmplitudeToDB()(spec.repeat(3, 1, 1))

103
        torch.testing.assert_allclose(computed, expected)
104
105
106
107
108
109
110
111
112
113

    def test_batch_Resample(self):
        waveform = torch.randn(2, 2786)

        # Single then transform then batch
        expected = torchaudio.transforms.Resample()(waveform).repeat(3, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.Resample()(waveform.repeat(3, 1, 1))

114
        torch.testing.assert_allclose(computed, expected)
115
116
117
118
119
120
121
122
123
124
125

    def test_batch_MelScale(self):
        specgram = torch.randn(2, 31, 2786)

        # Single then transform then batch
        expected = torchaudio.transforms.MelScale()(specgram).repeat(3, 1, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.MelScale()(specgram.repeat(3, 1, 1, 1))

        # shape = (3, 2, 201, 1394)
126
        torch.testing.assert_allclose(computed, expected)
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

    def test_batch_InverseMelScale(self):
        n_mels = 32
        n_stft = 5
        mel_spec = torch.randn(2, n_mels, 32) ** 2

        # Single then transform then batch
        expected = torchaudio.transforms.InverseMelScale(n_stft, n_mels)(mel_spec).repeat(3, 1, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.InverseMelScale(n_stft, n_mels)(mel_spec.repeat(3, 1, 1, 1))

        # shape = (3, 2, n_mels, 32)

        # Because InverseMelScale runs SGD on randomly initialized values so they do not yield
        # exactly same result. For this reason, tolerance is very relaxed here.
143
        torch.testing.assert_allclose(computed, expected, atol=1.0, rtol=1e-5)
144
145
146
147
148
149
150
151
152
153
154

    def test_batch_compute_deltas(self):
        specgram = torch.randn(2, 31, 2786)

        # Single then transform then batch
        expected = torchaudio.transforms.ComputeDeltas()(specgram).repeat(3, 1, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.ComputeDeltas()(specgram.repeat(3, 1, 1, 1))

        # shape = (3, 2, 201, 1394)
155
        torch.testing.assert_allclose(computed, expected)
156
157

    def test_batch_mulaw(self):
158
        test_filepath = common_utils.get_asset_path('steam-train-whistle-daniel_simon.wav')
159
160
161
162
163
164
165
166
167
168
169
        waveform, _ = torchaudio.load(test_filepath)  # (2, 278756), 44100

        # Single then transform then batch
        waveform_encoded = torchaudio.transforms.MuLawEncoding()(waveform)
        expected = waveform_encoded.unsqueeze(0).repeat(3, 1, 1)

        # Batch then transform
        waveform_batched = waveform.unsqueeze(0).repeat(3, 1, 1)
        computed = torchaudio.transforms.MuLawEncoding()(waveform_batched)

        # shape = (3, 2, 201, 1394)
170
        torch.testing.assert_allclose(computed, expected)
171
172
173
174
175
176
177
178
179

        # Single then transform then batch
        waveform_decoded = torchaudio.transforms.MuLawDecoding()(waveform_encoded)
        expected = waveform_decoded.unsqueeze(0).repeat(3, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.MuLawDecoding()(computed)

        # shape = (3, 2, 201, 1394)
180
        torch.testing.assert_allclose(computed, expected)
181
182

    def test_batch_spectrogram(self):
183
        test_filepath = common_utils.get_asset_path('steam-train-whistle-daniel_simon.wav')
184
185
186
187
188
189
190
        waveform, _ = torchaudio.load(test_filepath)  # (2, 278756), 44100

        # Single then transform then batch
        expected = torchaudio.transforms.Spectrogram()(waveform).repeat(3, 1, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.Spectrogram()(waveform.repeat(3, 1, 1))
191
        torch.testing.assert_allclose(computed, expected)
192
193

    def test_batch_melspectrogram(self):
194
        test_filepath = common_utils.get_asset_path('steam-train-whistle-daniel_simon.wav')
195
196
197
198
199
200
201
        waveform, _ = torchaudio.load(test_filepath)  # (2, 278756), 44100

        # Single then transform then batch
        expected = torchaudio.transforms.MelSpectrogram()(waveform).repeat(3, 1, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.MelSpectrogram()(waveform.repeat(3, 1, 1))
202
        torch.testing.assert_allclose(computed, expected)
203
204

    def test_batch_mfcc(self):
moto's avatar
moto committed
205
        test_filepath = common_utils.get_asset_path('steam-train-whistle-daniel_simon.wav')
206
207
208
209
210
211
212
        waveform, _ = torchaudio.load(test_filepath)

        # Single then transform then batch
        expected = torchaudio.transforms.MFCC()(waveform).repeat(3, 1, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.MFCC()(waveform.repeat(3, 1, 1))
213
        torch.testing.assert_allclose(computed, expected, atol=1e-5, rtol=1e-5)
214
215

    def test_batch_TimeStretch(self):
216
        test_filepath = common_utils.get_asset_path('steam-train-whistle-daniel_simon.wav')
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        waveform, _ = torchaudio.load(test_filepath)  # (2, 278756), 44100

        kwargs = {
            'n_fft': 2048,
            'hop_length': 512,
            'win_length': 2048,
            'window': torch.hann_window(2048),
            'center': True,
            'pad_mode': 'reflect',
            'normalized': True,
            'onesided': True,
        }
        rate = 2

        complex_specgrams = torch.stft(waveform, **kwargs)

        # Single then transform then batch
        expected = torchaudio.transforms.TimeStretch(
            fixed_rate=rate,
            n_freq=1025,
            hop_length=512,
        )(complex_specgrams).repeat(3, 1, 1, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.TimeStretch(
            fixed_rate=rate,
            n_freq=1025,
            hop_length=512,
        )(complex_specgrams.repeat(3, 1, 1, 1, 1))

247
        torch.testing.assert_allclose(computed, expected, atol=1e-5, rtol=1e-5)
248
249

    def test_batch_Fade(self):
250
        test_filepath = common_utils.get_asset_path('steam-train-whistle-daniel_simon.wav')
251
252
253
254
255
256
257
258
259
        waveform, _ = torchaudio.load(test_filepath)  # (2, 278756), 44100
        fade_in_len = 3000
        fade_out_len = 3000

        # Single then transform then batch
        expected = torchaudio.transforms.Fade(fade_in_len, fade_out_len)(waveform).repeat(3, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.Fade(fade_in_len, fade_out_len)(waveform.repeat(3, 1, 1))
260
        torch.testing.assert_allclose(computed, expected)
261
262

    def test_batch_Vol(self):
263
        test_filepath = common_utils.get_asset_path('steam-train-whistle-daniel_simon.wav')
264
265
266
267
268
269
270
        waveform, _ = torchaudio.load(test_filepath)  # (2, 278756), 44100

        # Single then transform then batch
        expected = torchaudio.transforms.Vol(gain=1.1)(waveform).repeat(3, 1, 1)

        # Batch then transform
        computed = torchaudio.transforms.Vol(gain=1.1)(waveform.repeat(3, 1, 1))
271
        torch.testing.assert_allclose(computed, expected)
Vincent QB's avatar
Vincent QB committed
272
273
274
275


if __name__ == '__main__':
    unittest.main()