models_test.py 5.4 KB
Newer Older
moto's avatar
moto committed
1
2
3
import itertools
from collections import namedtuple

Tomás Osório's avatar
Tomás Osório committed
4
import torch
moto's avatar
moto committed
5
6
7
8
9
10
11
12
from torchaudio.models import (
    Wav2Letter,
    MelResNet,
    UpsampleNetwork,
    WaveRNN,
    ConvTasNet,
)
from parameterized import parameterized
Tomás Osório's avatar
Tomás Osório committed
13

14
from torchaudio_unittest import common_utils
Tomás Osório's avatar
Tomás Osório committed
15

16
17

class TestWav2Letter(common_utils.TorchaudioTestCase):
jimchen90's avatar
jimchen90 committed
18
19
20
21
22
23
24
25

    def test_waveform(self):
        batch_size = 2
        num_features = 1
        num_classes = 40
        input_length = 320

        model = Wav2Letter(num_classes=num_classes, num_features=num_features)
Tomás Osório's avatar
Tomás Osório committed
26
27
28
29
30
31

        x = torch.rand(batch_size, num_features, input_length)
        out = model(x)

        assert out.size() == (batch_size, num_classes, 2)

jimchen90's avatar
jimchen90 committed
32
33
34
35
36
37
38
    def test_mfcc(self):
        batch_size = 2
        num_features = 13
        num_classes = 40
        input_length = 2

        model = Wav2Letter(num_classes=num_classes, input_type="mfcc", num_features=num_features)
Tomás Osório's avatar
Tomás Osório committed
39
40
41
42
43

        x = torch.rand(batch_size, num_features, input_length)
        out = model(x)

        assert out.size() == (batch_size, num_classes, 2)
jimchen90's avatar
jimchen90 committed
44
45


46
class TestMelResNet(common_utils.TorchaudioTestCase):
jimchen90's avatar
jimchen90 committed
47
48

    def test_waveform(self):
49
        """Validate the output dimensions of a MelResNet block.
jimchen90's avatar
jimchen90 committed
50
        """
jimchen90's avatar
jimchen90 committed
51

jimchen90's avatar
jimchen90 committed
52
53
54
55
56
57
58
        n_batch = 2
        n_time = 200
        n_freq = 100
        n_output = 128
        n_res_block = 10
        n_hidden = 128
        kernel_size = 5
jimchen90's avatar
jimchen90 committed
59

60
        model = MelResNet(n_res_block, n_freq, n_hidden, n_output, kernel_size)
jimchen90's avatar
jimchen90 committed
61

jimchen90's avatar
jimchen90 committed
62
        x = torch.rand(n_batch, n_freq, n_time)
jimchen90's avatar
jimchen90 committed
63
64
        out = model(x)

jimchen90's avatar
jimchen90 committed
65
        assert out.size() == (n_batch, n_output, n_time - kernel_size + 1)
jimchen90's avatar
jimchen90 committed
66
67
68
69
70


class TestUpsampleNetwork(common_utils.TorchaudioTestCase):

    def test_waveform(self):
71
        """Validate the output dimensions of a UpsampleNetwork block.
jimchen90's avatar
jimchen90 committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
        """

        upsample_scales = [5, 5, 8]
        n_batch = 2
        n_time = 200
        n_freq = 100
        n_output = 256
        n_res_block = 10
        n_hidden = 128
        kernel_size = 5

        total_scale = 1
        for upsample_scale in upsample_scales:
            total_scale *= upsample_scale

87
88
89
90
91
92
        model = UpsampleNetwork(upsample_scales,
                                n_res_block,
                                n_freq,
                                n_hidden,
                                n_output,
                                kernel_size)
jimchen90's avatar
jimchen90 committed
93
94
95
96
97
98

        x = torch.rand(n_batch, n_freq, n_time)
        out1, out2 = model(x)

        assert out1.size() == (n_batch, n_freq, total_scale * (n_time - kernel_size + 1))
        assert out2.size() == (n_batch, n_output, total_scale * (n_time - kernel_size + 1))
jimchen90's avatar
jimchen90 committed
99
100
101
102
103


class TestWaveRNN(common_utils.TorchaudioTestCase):

    def test_waveform(self):
104
        """Validate the output dimensions of a WaveRNN model.
jimchen90's avatar
jimchen90 committed
105
106
107
108
109
        """

        upsample_scales = [5, 5, 8]
        n_rnn = 512
        n_fc = 512
110
        n_classes = 512
jimchen90's avatar
jimchen90 committed
111
112
113
114
115
116
117
118
119
        hop_length = 200
        n_batch = 2
        n_time = 200
        n_freq = 100
        n_output = 256
        n_res_block = 10
        n_hidden = 128
        kernel_size = 5

120
121
        model = WaveRNN(upsample_scales, n_classes, hop_length, n_res_block,
                        n_rnn, n_fc, kernel_size, n_freq, n_hidden, n_output)
jimchen90's avatar
jimchen90 committed
122
123
124
125
126

        x = torch.rand(n_batch, 1, hop_length * (n_time - kernel_size + 1))
        mels = torch.rand(n_batch, 1, n_freq, n_time)
        out = model(x, mels)

127
        assert out.size() == (n_batch, 1, hop_length * (n_time - kernel_size + 1), n_classes)
moto's avatar
moto committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182


_ConvTasNetParams = namedtuple(
    '_ConvTasNetParams',
    [
        'enc_num_feats',
        'enc_kernel_size',
        'msk_num_feats',
        'msk_num_hidden_feats',
        'msk_kernel_size',
        'msk_num_layers',
        'msk_num_stacks',
    ]
)


class TestConvTasNet(common_utils.TorchaudioTestCase):
    @parameterized.expand(list(itertools.product(
        [2, 3],
        [
            _ConvTasNetParams(128, 40, 128, 256, 3, 7, 2),
            _ConvTasNetParams(256, 40, 128, 256, 3, 7, 2),
            _ConvTasNetParams(512, 40, 128, 256, 3, 7, 2),
            _ConvTasNetParams(512, 40, 128, 256, 3, 7, 2),
            _ConvTasNetParams(512, 40, 128, 512, 3, 7, 2),
            _ConvTasNetParams(512, 40, 128, 512, 3, 7, 2),
            _ConvTasNetParams(512, 40, 256, 256, 3, 7, 2),
            _ConvTasNetParams(512, 40, 256, 512, 3, 7, 2),
            _ConvTasNetParams(512, 40, 256, 512, 3, 7, 2),
            _ConvTasNetParams(512, 40, 128, 512, 3, 6, 4),
            _ConvTasNetParams(512, 40, 128, 512, 3, 4, 6),
            _ConvTasNetParams(512, 40, 128, 512, 3, 8, 3),
            _ConvTasNetParams(512, 32, 128, 512, 3, 8, 3),
            _ConvTasNetParams(512, 16, 128, 512, 3, 8, 3),
        ],
    )))
    def test_paper_configuration(self, num_sources, model_params):
        """ConvTasNet model works on the valid configurations in the paper"""
        batch_size = 32
        num_frames = 8000

        model = ConvTasNet(
            num_sources=num_sources,
            enc_kernel_size=model_params.enc_kernel_size,
            enc_num_feats=model_params.enc_num_feats,
            msk_kernel_size=model_params.msk_kernel_size,
            msk_num_feats=model_params.msk_num_feats,
            msk_num_hidden_feats=model_params.msk_num_hidden_feats,
            msk_num_layers=model_params.msk_num_layers,
            msk_num_stacks=model_params.msk_num_stacks,
        )
        tensor = torch.rand(batch_size, 1, num_frames)
        output = model(tensor)

        assert output.shape == (batch_size, num_sources, num_frames)