"git@developer.sourcefind.cn:OpenDAS/mmcv.git" did not exist on "362a90f8bfffe62d5802925944f540ed16b2731e"
Unverified Commit 878d3dac authored by jimchen90's avatar jimchen90 Committed by GitHub
Browse files

Update MelResNet (#751)



* update varible names and docstring

* update format

* update docsting and output value
Co-authored-by: default avatarJi Chen <jimchen90@devfair0160.h2.fair>
parent 4daf2fb7
......@@ -36,18 +36,20 @@ class TestWav2Letter(common_utils.TorchaudioTestCase):
class TestMelResNet(common_utils.TorchaudioTestCase):
def test_waveform(self):
"""Validate the output dimensions of a _MelResNet block.
"""
batch_size = 2
num_features = 200
input_dims = 100
output_dims = 128
res_blocks = 10
hidden_dims = 128
pad = 2
n_batch = 2
n_time = 200
n_freq = 100
n_output = 128
n_res_block = 10
n_hidden = 128
kernel_size = 5
model = _MelResNet(res_blocks, input_dims, hidden_dims, output_dims, pad)
model = _MelResNet(n_res_block, n_freq, n_hidden, n_output, kernel_size)
x = torch.rand(batch_size, input_dims, num_features)
x = torch.rand(n_batch, n_freq, n_time)
out = model(x)
assert out.size() == (batch_size, output_dims, num_features - pad * 2)
assert out.size() == (n_batch, n_output, n_time - kernel_size + 1)
......@@ -5,101 +5,83 @@ __all__ = ["_ResBlock", "_MelResNet"]
class _ResBlock(nn.Module):
r"""This is a ResNet block layer. This layer is based on the paper "Deep Residual Learning
for Image Recognition". Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. CVPR, 2016.
It is a block used in WaveRNN. WaveRNN is based on the paper "Efficient Neural Audio Synthesis".
Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb Noury, Norman Casagrande, Edward Lockhart,
Florian Stimberg, Aaron van den Oord, Sander Dieleman, Koray Kavukcuoglu. arXiv:1802.08435, 2018.
r"""ResNet block based on "Deep Residual Learning for Image Recognition"
The paper link is https://arxiv.org/pdf/1512.03385.pdf.
Args:
num_dims: the number of compute dimensions in the input (default=128).
n_freq: the number of bins in a spectrogram (default=128)
Examples::
>>> resblock = _ResBlock(num_dims=128)
>>> input = torch.rand(10, 128, 512)
>>> output = resblock(input)
Examples
>>> resblock = _ResBlock()
>>> input = torch.rand(10, 128, 512) # a random spectrogram
>>> output = resblock(input) # shape: (10, 128, 512)
"""
def __init__(self, num_dims: int = 128) -> None:
def __init__(self, n_freq: int = 128) -> None:
super().__init__()
self.resblock_model = nn.Sequential(
nn.Conv1d(in_channels=num_dims, out_channels=num_dims, kernel_size=1, bias=False),
nn.BatchNorm1d(num_dims),
nn.Conv1d(in_channels=n_freq, out_channels=n_freq, kernel_size=1, bias=False),
nn.BatchNorm1d(n_freq),
nn.ReLU(inplace=True),
nn.Conv1d(in_channels=num_dims, out_channels=num_dims, kernel_size=1, bias=False),
nn.BatchNorm1d(num_dims)
nn.Conv1d(in_channels=n_freq, out_channels=n_freq, kernel_size=1, bias=False),
nn.BatchNorm1d(n_freq)
)
def forward(self, x: Tensor) -> Tensor:
def forward(self, specgram: Tensor) -> Tensor:
r"""Pass the input through the _ResBlock layer.
Args:
x: the input sequence to the _ResBlock layer (required).
specgram (Tensor): the input sequence to the _ResBlock layer (n_batch, n_freq, n_time).
Shape:
- x: :math:`(N, S, T)`.
- output: :math:`(N, S, T)`.
where N is the batch size, S is the number of input sequence,
T is the length of input sequence.
Return:
Tensor shape: (n_batch, n_freq, n_time)
"""
residual = x
return self.resblock_model(x) + residual
return self.resblock_model(specgram) + specgram
class _MelResNet(nn.Module):
r"""This is a MelResNet layer based on a stack of ResBlocks. It is a block used in WaveRNN.
WaveRNN is based on the paper "Efficient Neural Audio Synthesis". Nal Kalchbrenner, Erich Elsen,
Karen Simonyan, Seb Noury, Norman Casagrande, Edward Lockhart, Florian Stimberg, Aaron van den Oord,
Sander Dieleman, Koray Kavukcuoglu. arXiv:1802.08435, 2018.
r"""MelResNet layer uses a stack of ResBlocks on spectrogram.
Args:
res_blocks: the number of ResBlock in stack (default=10).
input_dims: the number of input sequence (default=100).
hidden_dims: the number of compute dimensions (default=128).
output_dims: the number of output sequence (default=128).
pad: the number of kernal size (pad * 2 + 1) in the first Conv1d layer (default=2).
Examples::
>>> melresnet = _MelResNet(res_blocks=10, input_dims=100,
hidden_dims=128, output_dims=128, pad=2)
>>> input = torch.rand(10, 100, 512)
>>> output = melresnet(input)
n_res_block: the number of ResBlock in stack (default=10)
n_freq: the number of bins in a spectrogram (default=128)
n_hidden: the number of hidden dimensions (default=128)
n_output: the number of output dimensions (default=128)
kernel_size: the number of kernel size in the first Conv1d layer (default=5)
Examples
>>> melresnet = _MelResNet()
>>> input = torch.rand(10, 128, 512) # a random spectrogram
>>> output = melresnet(input) # shape: (10, 128, 508)
"""
def __init__(self, res_blocks: int = 10,
input_dims: int = 100,
hidden_dims: int = 128,
output_dims: int = 128,
pad: int = 2) -> None:
def __init__(self,
n_res_block: int = 10,
n_freq: int = 128,
n_hidden: int = 128,
n_output: int = 128,
kernel_size: int = 5) -> None:
super().__init__()
kernel_size = pad * 2 + 1
ResBlocks = []
for i in range(res_blocks):
ResBlocks.append(_ResBlock(hidden_dims))
ResBlocks = [_ResBlock(n_hidden) for _ in range(n_res_block)]
self.melresnet_model = nn.Sequential(
nn.Conv1d(in_channels=input_dims, out_channels=hidden_dims, kernel_size=kernel_size, bias=False),
nn.BatchNorm1d(hidden_dims),
nn.Conv1d(in_channels=n_freq, out_channels=n_hidden, kernel_size=kernel_size, bias=False),
nn.BatchNorm1d(n_hidden),
nn.ReLU(inplace=True),
*ResBlocks,
nn.Conv1d(in_channels=hidden_dims, out_channels=output_dims, kernel_size=1)
nn.Conv1d(in_channels=n_hidden, out_channels=n_output, kernel_size=1)
)
def forward(self, x: Tensor) -> Tensor:
def forward(self, specgram: Tensor) -> Tensor:
r"""Pass the input through the _MelResNet layer.
Args:
x: the input sequence to the _MelResNet layer (required).
specgram (Tensor): the input sequence to the _MelResNet layer (n_batch, n_freq, n_time).
Shape:
- x: :math:`(N, S, T)`.
- output: :math:`(N, P, T - 2 * pad)`.
where N is the batch size, S is the number of input sequence,
P is the number of output sequence, T is the length of input sequence.
Return:
Tensor shape: (n_batch, n_output, n_time - kernel_size + 1)
"""
return self.melresnet_model(x)
return self.melresnet_model(specgram)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment