test_functional.py 15.1 KB
Newer Older
jamarshon's avatar
jamarshon committed
1
import math
2
import unittest
jamarshon's avatar
jamarshon committed
3
4
5

import torch
import torchaudio
6
7
import torchaudio.functional as F
import pytest
jamarshon's avatar
jamarshon committed
8

9
import common_utils
10

jamarshon's avatar
jamarshon committed
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
class _LfilterMixin:
    device = None
    dtype = None

    def test_simple(self):
        """
        Create a very basic signal,
        Then make a simple 4th order delay
        The output should be same as the input but shifted
        """

        torch.random.manual_seed(42)
        waveform = torch.rand(2, 44100 * 1, dtype=self.dtype, device=self.device)
        b_coeffs = torch.tensor([0, 0, 0, 1], dtype=self.dtype, device=self.device)
        a_coeffs = torch.tensor([1, 0, 0, 0], dtype=self.dtype, device=self.device)
        output_waveform = F.lfilter(waveform, a_coeffs, b_coeffs)

        torch.testing.assert_allclose(output_waveform[:, 3:], waveform[:, 0:-3], atol=1e-5, rtol=1e-5)

31
32
33
34
35
36
37
38
39
    def test_clamp(self):
        input_signal = torch.ones(1, 44100 * 1, dtype=self.dtype, device=self.device)
        b_coeffs = torch.tensor([1, 0], dtype=self.dtype, device=self.device)
        a_coeffs = torch.tensor([1, -0.95], dtype=self.dtype, device=self.device)
        output_signal = F.lfilter(input_signal, a_coeffs, b_coeffs, clamp=True)
        self.assertTrue(output_signal.max() <= 1)
        output_signal = F.lfilter(input_signal, a_coeffs, b_coeffs, clamp=False)
        self.assertTrue(output_signal.max() > 1)

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

class TestLfilterFloat32CPU(_LfilterMixin, unittest.TestCase):
    device = torch.device('cpu')
    dtype = torch.float32


class TestLfilterFloat64CPU(_LfilterMixin, unittest.TestCase):
    device = torch.device('cpu')
    dtype = torch.float64


@unittest.skipIf(not torch.cuda.is_available(), "CUDA not available")
class TestLfilterFloat32CUDA(_LfilterMixin, unittest.TestCase):
    device = torch.device('cuda')
    dtype = torch.float32


moto's avatar
moto committed
57
58
59
60
61
62
class TestComputeDeltas(unittest.TestCase):
    """Test suite for correctness of compute_deltas"""
    def test_one_channel(self):
        specgram = torch.tensor([[[1.0, 2.0, 3.0, 4.0]]])
        expected = torch.tensor([[[0.5, 1.0, 1.0, 0.5]]])
        computed = F.compute_deltas(specgram, win_length=3)
63
        torch.testing.assert_allclose(computed, expected)
Vincent QB's avatar
Vincent QB committed
64

moto's avatar
moto committed
65
66
67
68
69
70
    def test_two_channels(self):
        specgram = torch.tensor([[[1.0, 2.0, 3.0, 4.0],
                                  [1.0, 2.0, 3.0, 4.0]]])
        expected = torch.tensor([[[0.5, 1.0, 1.0, 0.5],
                                  [0.5, 1.0, 1.0, 0.5]]])
        computed = F.compute_deltas(specgram, win_length=3)
71
        torch.testing.assert_allclose(computed, expected)
72

Vincent QB's avatar
Vincent QB committed
73

moto's avatar
moto committed
74
75
76
def _compare_estimate(sound, estimate, atol=1e-6, rtol=1e-8):
    # trim sound for case when constructed signal is shorter than original
    sound = sound[..., :estimate.size(-1)]
77
    torch.testing.assert_allclose(estimate, sound, atol=atol, rtol=rtol)
Vincent QB's avatar
Vincent QB committed
78
79


moto's avatar
moto committed
80
81
82
83
84
def _test_istft_is_inverse_of_stft(kwargs):
    # generates a random sound signal for each tril and then does the stft/istft
    # operation to check whether we can reconstruct signal
    for data_size in [(2, 20), (3, 15), (4, 10)]:
        for i in range(100):
jamarshon's avatar
jamarshon committed
85

moto's avatar
moto committed
86
            sound = common_utils.random_float_tensor(i, data_size)
jamarshon's avatar
jamarshon committed
87

moto's avatar
moto committed
88
89
            stft = torch.stft(sound, **kwargs)
            estimate = torchaudio.functional.istft(stft, length=sound.size(1), **kwargs)
Vincent QB's avatar
Vincent QB committed
90

moto's avatar
moto committed
91
            _compare_estimate(sound, estimate)
jamarshon's avatar
jamarshon committed
92
93


moto's avatar
moto committed
94
95
96
class TestIstft(unittest.TestCase):
    """Test suite for correctness of istft with various input"""
    number_of_trials = 100
jamarshon's avatar
jamarshon committed
97
98
99
100
101
102
103
104
105
106
107
108
109

    def test_istft_is_inverse_of_stft1(self):
        # hann_window, centered, normalized, onesided
        kwargs1 = {
            'n_fft': 12,
            'hop_length': 4,
            'win_length': 12,
            'window': torch.hann_window(12),
            'center': True,
            'pad_mode': 'reflect',
            'normalized': True,
            'onesided': True,
        }
moto's avatar
moto committed
110
        _test_istft_is_inverse_of_stft(kwargs1)
jamarshon's avatar
jamarshon committed
111
112
113
114
115
116
117
118
119
120
121
122
123

    def test_istft_is_inverse_of_stft2(self):
        # hann_window, centered, not normalized, not onesided
        kwargs2 = {
            'n_fft': 12,
            'hop_length': 2,
            'win_length': 8,
            'window': torch.hann_window(8),
            'center': True,
            'pad_mode': 'reflect',
            'normalized': False,
            'onesided': False,
        }
moto's avatar
moto committed
124
        _test_istft_is_inverse_of_stft(kwargs2)
jamarshon's avatar
jamarshon committed
125
126
127
128
129
130
131
132
133
134
135
136
137

    def test_istft_is_inverse_of_stft3(self):
        # hamming_window, centered, normalized, not onesided
        kwargs3 = {
            'n_fft': 15,
            'hop_length': 3,
            'win_length': 11,
            'window': torch.hamming_window(11),
            'center': True,
            'pad_mode': 'constant',
            'normalized': True,
            'onesided': False,
        }
moto's avatar
moto committed
138
        _test_istft_is_inverse_of_stft(kwargs3)
jamarshon's avatar
jamarshon committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152

    def test_istft_is_inverse_of_stft4(self):
        # hamming_window, not centered, not normalized, onesided
        # window same size as n_fft
        kwargs4 = {
            'n_fft': 5,
            'hop_length': 2,
            'win_length': 5,
            'window': torch.hamming_window(5),
            'center': False,
            'pad_mode': 'constant',
            'normalized': False,
            'onesided': True,
        }
moto's avatar
moto committed
153
        _test_istft_is_inverse_of_stft(kwargs4)
jamarshon's avatar
jamarshon committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167

    def test_istft_is_inverse_of_stft5(self):
        # hamming_window, not centered, not normalized, not onesided
        # window same size as n_fft
        kwargs5 = {
            'n_fft': 3,
            'hop_length': 2,
            'win_length': 3,
            'window': torch.hamming_window(3),
            'center': False,
            'pad_mode': 'reflect',
            'normalized': False,
            'onesided': False,
        }
moto's avatar
moto committed
168
        _test_istft_is_inverse_of_stft(kwargs5)
jamarshon's avatar
jamarshon committed
169
170
171
172
173
174
175
176
177
178

    def test_istft_of_ones(self):
        # stft = torch.stft(torch.ones(4), 4)
        stft = torch.tensor([
            [[4., 0.], [4., 0.], [4., 0.], [4., 0.], [4., 0.]],
            [[0., 0.], [0., 0.], [0., 0.], [0., 0.], [0., 0.]],
            [[0., 0.], [0., 0.], [0., 0.], [0., 0.], [0., 0.]]
        ])

        estimate = torchaudio.functional.istft(stft, n_fft=4, length=4)
moto's avatar
moto committed
179
        _compare_estimate(torch.ones(4), estimate)
jamarshon's avatar
jamarshon committed
180
181
182
183
184
185

    def test_istft_of_zeros(self):
        # stft = torch.stft(torch.zeros(4), 4)
        stft = torch.zeros((3, 5, 2))

        estimate = torchaudio.functional.istft(stft, n_fft=4, length=4)
moto's avatar
moto committed
186
        _compare_estimate(torch.zeros(4), estimate)
jamarshon's avatar
jamarshon committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

    def test_istft_requires_overlap_windows(self):
        # the window is size 1 but it hops 20 so there is a gap which throw an error
        stft = torch.zeros((3, 5, 2))
        self.assertRaises(AssertionError, torchaudio.functional.istft, stft, n_fft=4,
                          hop_length=20, win_length=1, window=torch.ones(1))

    def test_istft_requires_nola(self):
        stft = torch.zeros((3, 5, 2))
        kwargs_ok = {
            'n_fft': 4,
            'win_length': 4,
            'window': torch.ones(4),
        }

        kwargs_not_ok = {
            'n_fft': 4,
            'win_length': 4,
            'window': torch.zeros(4),
        }

        # A window of ones meets NOLA but a window of zeros does not. This should
        # throw an error.
        torchaudio.functional.istft(stft, **kwargs_ok)
        self.assertRaises(AssertionError, torchaudio.functional.istft, stft, **kwargs_not_ok)

    def test_istft_requires_non_empty(self):
        self.assertRaises(AssertionError, torchaudio.functional.istft, torch.zeros((3, 0, 2)), 2)
        self.assertRaises(AssertionError, torchaudio.functional.istft, torch.zeros((0, 3, 2)), 2)

    def _test_istft_of_sine(self, amplitude, L, n):
        # stft of amplitude*sin(2*pi/L*n*x) with the hop length and window size equaling L
        x = torch.arange(2 * L + 1, dtype=torch.get_default_dtype())
        sound = amplitude * torch.sin(2 * math.pi / L * x * n)
        # stft = torch.stft(sound, L, hop_length=L, win_length=L,
        #                   window=torch.ones(L), center=False, normalized=False)
        stft = torch.zeros((L // 2 + 1, 2, 2))
        stft_largest_val = (amplitude * L) / 2.0
        if n < stft.size(0):
            stft[n, :, 1] = -stft_largest_val

        if 0 <= L - n < stft.size(0):
            # symmetric about L // 2
            stft[L - n, :, 1] = stft_largest_val

        estimate = torchaudio.functional.istft(stft, L, hop_length=L, win_length=L,
                                               window=torch.ones(L), center=False, normalized=False)
        # There is a larger error due to the scaling of amplitude
moto's avatar
moto committed
235
        _compare_estimate(sound, estimate, atol=1e-3)
jamarshon's avatar
jamarshon committed
236
237
238
239
240
241
242
243
244
245

    def test_istft_of_sine(self):
        self._test_istft_of_sine(amplitude=123, L=5, n=1)
        self._test_istft_of_sine(amplitude=150, L=5, n=2)
        self._test_istft_of_sine(amplitude=111, L=5, n=3)
        self._test_istft_of_sine(amplitude=160, L=7, n=4)
        self._test_istft_of_sine(amplitude=145, L=8, n=5)
        self._test_istft_of_sine(amplitude=80, L=9, n=6)
        self._test_istft_of_sine(amplitude=99, L=10, n=7)

246
247
248
249
250
251
252
253
254
    def _test_linearity_of_istft(self, data_size, kwargs, atol=1e-6, rtol=1e-8):
        for i in range(self.number_of_trials):
            tensor1 = common_utils.random_float_tensor(i, data_size)
            tensor2 = common_utils.random_float_tensor(i * 2, data_size)
            a, b = torch.rand(2)
            istft1 = torchaudio.functional.istft(tensor1, **kwargs)
            istft2 = torchaudio.functional.istft(tensor2, **kwargs)
            istft = a * istft1 + b * istft2
            estimate = torchaudio.functional.istft(a * tensor1 + b * tensor2, **kwargs)
moto's avatar
moto committed
255
            _compare_estimate(istft, estimate, atol, rtol)
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308

    def test_linearity_of_istft1(self):
        # hann_window, centered, normalized, onesided
        kwargs1 = {
            'n_fft': 12,
            'window': torch.hann_window(12),
            'center': True,
            'pad_mode': 'reflect',
            'normalized': True,
            'onesided': True,
        }
        data_size = (2, 7, 7, 2)
        self._test_linearity_of_istft(data_size, kwargs1)

    def test_linearity_of_istft2(self):
        # hann_window, centered, not normalized, not onesided
        kwargs2 = {
            'n_fft': 12,
            'window': torch.hann_window(12),
            'center': True,
            'pad_mode': 'reflect',
            'normalized': False,
            'onesided': False,
        }
        data_size = (2, 12, 7, 2)
        self._test_linearity_of_istft(data_size, kwargs2)

    def test_linearity_of_istft3(self):
        # hamming_window, centered, normalized, not onesided
        kwargs3 = {
            'n_fft': 12,
            'window': torch.hamming_window(12),
            'center': True,
            'pad_mode': 'constant',
            'normalized': True,
            'onesided': False,
        }
        data_size = (2, 12, 7, 2)
        self._test_linearity_of_istft(data_size, kwargs3)

    def test_linearity_of_istft4(self):
        # hamming_window, not centered, not normalized, onesided
        kwargs4 = {
            'n_fft': 12,
            'window': torch.hamming_window(12),
            'center': False,
            'pad_mode': 'constant',
            'normalized': False,
            'onesided': True,
        }
        data_size = (2, 7, 3, 2)
        self._test_linearity_of_istft(data_size, kwargs4, atol=1e-5, rtol=1e-8)

moto's avatar
moto committed
309
310

class TestDetectPitchFrequency(unittest.TestCase):
311
    def test_pitch(self):
312
313
        test_filepath_100 = common_utils.get_asset_path("100Hz_44100Hz_16bit_05sec.wav")
        test_filepath_440 = common_utils.get_asset_path("440Hz_44100Hz_16bit_05sec.wav")
Vincent QB's avatar
Vincent QB committed
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

        # Files from https://www.mediacollege.com/audio/tone/download/
        tests = [
            (test_filepath_100, 100),
            (test_filepath_440, 440),
        ]

        for filename, freq_ref in tests:
            waveform, sample_rate = torchaudio.load(filename)

            freq = torchaudio.functional.detect_pitch_frequency(waveform, sample_rate)

            threshold = 1
            s = ((freq - freq_ref).abs() > threshold).sum()
            self.assertFalse(s)

moto's avatar
moto committed
330
331

class TestDB_to_amplitude(unittest.TestCase):
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
    def test_DB_to_amplitude(self):
        # Make some noise
        x = torch.rand(1000)
        spectrogram = torchaudio.transforms.Spectrogram()
        spec = spectrogram(x)

        amin = 1e-10
        ref = 1.0
        db_multiplier = math.log10(max(amin, ref))

        # Waveform amplitude -> DB -> amplitude
        multiplier = 20.
        power = 0.5

        db = F.amplitude_to_DB(torch.abs(x), multiplier, amin, db_multiplier, top_db=None)
        x2 = F.DB_to_amplitude(db, ref, power)

349
        torch.testing.assert_allclose(x2, torch.abs(x), atol=5e-5, rtol=1e-5)
350
351
352
353
354

        # Spectrogram amplitude -> DB -> amplitude
        db = F.amplitude_to_DB(spec, multiplier, amin, db_multiplier, top_db=None)
        x2 = F.DB_to_amplitude(db, ref, power)

355
        torch.testing.assert_allclose(x2, spec, atol=5e-5, rtol=1e-5)
356
357
358
359
360
361
362
363

        # Waveform power -> DB -> power
        multiplier = 10.
        power = 1.

        db = F.amplitude_to_DB(x, multiplier, amin, db_multiplier, top_db=None)
        x2 = F.DB_to_amplitude(db, ref, power)

364
        torch.testing.assert_allclose(x2, torch.abs(x), atol=5e-5, rtol=1e-5)
365
366
367
368
369

        # Spectrogram power -> DB -> power
        db = F.amplitude_to_DB(spec, multiplier, amin, db_multiplier, top_db=None)
        x2 = F.DB_to_amplitude(db, ref, power)

370
        torch.testing.assert_allclose(x2, spec, atol=5e-5, rtol=1e-5)
371

372
373
374
375
376
377
378
379
380
381

@pytest.mark.parametrize('complex_tensor', [
    torch.randn(1, 2, 1025, 400, 2),
    torch.randn(1025, 400, 2)
])
@pytest.mark.parametrize('power', [1, 2, 0.7])
def test_complex_norm(complex_tensor, power):
    expected_norm_tensor = complex_tensor.pow(2).sum(-1).pow(power / 2)
    norm_tensor = F.complex_norm(complex_tensor, power)

382
    torch.testing.assert_allclose(norm_tensor, expected_norm_tensor, atol=1e-5, rtol=1e-5)
383
384


385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
@pytest.mark.parametrize('specgram', [
    torch.randn(2, 1025, 400),
    torch.randn(1, 201, 100)
])
@pytest.mark.parametrize('mask_param', [100])
@pytest.mark.parametrize('mask_value', [0., 30.])
@pytest.mark.parametrize('axis', [1, 2])
def test_mask_along_axis(specgram, mask_param, mask_value, axis):

    mask_specgram = F.mask_along_axis(specgram, mask_param, mask_value, axis)

    other_axis = 1 if axis == 2 else 2

    masked_columns = (mask_specgram == mask_value).sum(other_axis)
    num_masked_columns = (masked_columns == mask_specgram.size(other_axis)).sum()
    num_masked_columns /= mask_specgram.size(0)

    assert mask_specgram.size() == specgram.size()
    assert num_masked_columns < mask_param


@pytest.mark.parametrize('mask_param', [100])
@pytest.mark.parametrize('mask_value', [0., 30.])
@pytest.mark.parametrize('axis', [2, 3])
409
410
411
def test_mask_along_axis_iid(mask_param, mask_value, axis):
    torch.random.manual_seed(42)
    specgrams = torch.randn(4, 2, 1025, 400)
412
413
414
415
416
417
418
419
420
421
422
423

    mask_specgrams = F.mask_along_axis_iid(specgrams, mask_param, mask_value, axis)

    other_axis = 2 if axis == 3 else 3

    masked_columns = (mask_specgrams == mask_value).sum(other_axis)
    num_masked_columns = (masked_columns == mask_specgrams.size(other_axis)).sum(-1)

    assert mask_specgrams.size() == specgrams.size()
    assert (num_masked_columns < mask_param).sum() == num_masked_columns.numel()


jamarshon's avatar
jamarshon committed
424
425
if __name__ == '__main__':
    unittest.main()