functional_cpu_test.py 13.7 KB
Newer Older
jamarshon's avatar
jamarshon committed
1
import math
2
import unittest
jamarshon's avatar
jamarshon committed
3
4
5

import torch
import torchaudio
6
7
import torchaudio.functional as F
import pytest
jamarshon's avatar
jamarshon committed
8

9
from . import common_utils
10
from .functional_impl import Lfilter
11

jamarshon's avatar
jamarshon committed
12

13
14
15
class TestLFilterFloat32(Lfilter, common_utils.TestCase):
    dtype = torch.float32
    device = torch.device('cpu')
16
17


18
19
20
class TestLFilterFloat64(Lfilter, common_utils.TestCase):
    dtype = torch.float64
    device = torch.device('cpu')
21
22


moto's avatar
moto committed
23
24
25
26
27
28
class TestComputeDeltas(unittest.TestCase):
    """Test suite for correctness of compute_deltas"""
    def test_one_channel(self):
        specgram = torch.tensor([[[1.0, 2.0, 3.0, 4.0]]])
        expected = torch.tensor([[[0.5, 1.0, 1.0, 0.5]]])
        computed = F.compute_deltas(specgram, win_length=3)
29
        torch.testing.assert_allclose(computed, expected)
Vincent QB's avatar
Vincent QB committed
30

moto's avatar
moto committed
31
32
33
34
35
36
    def test_two_channels(self):
        specgram = torch.tensor([[[1.0, 2.0, 3.0, 4.0],
                                  [1.0, 2.0, 3.0, 4.0]]])
        expected = torch.tensor([[[0.5, 1.0, 1.0, 0.5],
                                  [0.5, 1.0, 1.0, 0.5]]])
        computed = F.compute_deltas(specgram, win_length=3)
37
        torch.testing.assert_allclose(computed, expected)
38

Vincent QB's avatar
Vincent QB committed
39

moto's avatar
moto committed
40
41
42
def _compare_estimate(sound, estimate, atol=1e-6, rtol=1e-8):
    # trim sound for case when constructed signal is shorter than original
    sound = sound[..., :estimate.size(-1)]
43
    torch.testing.assert_allclose(estimate, sound, atol=atol, rtol=rtol)
Vincent QB's avatar
Vincent QB committed
44
45


moto's avatar
moto committed
46
47
48
49
50
def _test_istft_is_inverse_of_stft(kwargs):
    # generates a random sound signal for each tril and then does the stft/istft
    # operation to check whether we can reconstruct signal
    for data_size in [(2, 20), (3, 15), (4, 10)]:
        for i in range(100):
jamarshon's avatar
jamarshon committed
51

moto's avatar
moto committed
52
            sound = common_utils.random_float_tensor(i, data_size)
jamarshon's avatar
jamarshon committed
53

moto's avatar
moto committed
54
55
            stft = torch.stft(sound, **kwargs)
            estimate = torchaudio.functional.istft(stft, length=sound.size(1), **kwargs)
Vincent QB's avatar
Vincent QB committed
56

moto's avatar
moto committed
57
            _compare_estimate(sound, estimate)
jamarshon's avatar
jamarshon committed
58
59


moto's avatar
moto committed
60
61
62
class TestIstft(unittest.TestCase):
    """Test suite for correctness of istft with various input"""
    number_of_trials = 100
jamarshon's avatar
jamarshon committed
63
64
65
66
67
68
69
70
71
72
73
74
75

    def test_istft_is_inverse_of_stft1(self):
        # hann_window, centered, normalized, onesided
        kwargs1 = {
            'n_fft': 12,
            'hop_length': 4,
            'win_length': 12,
            'window': torch.hann_window(12),
            'center': True,
            'pad_mode': 'reflect',
            'normalized': True,
            'onesided': True,
        }
moto's avatar
moto committed
76
        _test_istft_is_inverse_of_stft(kwargs1)
jamarshon's avatar
jamarshon committed
77
78
79
80
81
82
83
84
85
86
87
88
89

    def test_istft_is_inverse_of_stft2(self):
        # hann_window, centered, not normalized, not onesided
        kwargs2 = {
            'n_fft': 12,
            'hop_length': 2,
            'win_length': 8,
            'window': torch.hann_window(8),
            'center': True,
            'pad_mode': 'reflect',
            'normalized': False,
            'onesided': False,
        }
moto's avatar
moto committed
90
        _test_istft_is_inverse_of_stft(kwargs2)
jamarshon's avatar
jamarshon committed
91
92
93
94
95
96
97
98
99
100
101
102
103

    def test_istft_is_inverse_of_stft3(self):
        # hamming_window, centered, normalized, not onesided
        kwargs3 = {
            'n_fft': 15,
            'hop_length': 3,
            'win_length': 11,
            'window': torch.hamming_window(11),
            'center': True,
            'pad_mode': 'constant',
            'normalized': True,
            'onesided': False,
        }
moto's avatar
moto committed
104
        _test_istft_is_inverse_of_stft(kwargs3)
jamarshon's avatar
jamarshon committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118

    def test_istft_is_inverse_of_stft4(self):
        # hamming_window, not centered, not normalized, onesided
        # window same size as n_fft
        kwargs4 = {
            'n_fft': 5,
            'hop_length': 2,
            'win_length': 5,
            'window': torch.hamming_window(5),
            'center': False,
            'pad_mode': 'constant',
            'normalized': False,
            'onesided': True,
        }
moto's avatar
moto committed
119
        _test_istft_is_inverse_of_stft(kwargs4)
jamarshon's avatar
jamarshon committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133

    def test_istft_is_inverse_of_stft5(self):
        # hamming_window, not centered, not normalized, not onesided
        # window same size as n_fft
        kwargs5 = {
            'n_fft': 3,
            'hop_length': 2,
            'win_length': 3,
            'window': torch.hamming_window(3),
            'center': False,
            'pad_mode': 'reflect',
            'normalized': False,
            'onesided': False,
        }
moto's avatar
moto committed
134
        _test_istft_is_inverse_of_stft(kwargs5)
jamarshon's avatar
jamarshon committed
135
136
137
138
139
140
141
142
143
144

    def test_istft_of_ones(self):
        # stft = torch.stft(torch.ones(4), 4)
        stft = torch.tensor([
            [[4., 0.], [4., 0.], [4., 0.], [4., 0.], [4., 0.]],
            [[0., 0.], [0., 0.], [0., 0.], [0., 0.], [0., 0.]],
            [[0., 0.], [0., 0.], [0., 0.], [0., 0.], [0., 0.]]
        ])

        estimate = torchaudio.functional.istft(stft, n_fft=4, length=4)
moto's avatar
moto committed
145
        _compare_estimate(torch.ones(4), estimate)
jamarshon's avatar
jamarshon committed
146
147
148
149
150
151

    def test_istft_of_zeros(self):
        # stft = torch.stft(torch.zeros(4), 4)
        stft = torch.zeros((3, 5, 2))

        estimate = torchaudio.functional.istft(stft, n_fft=4, length=4)
moto's avatar
moto committed
152
        _compare_estimate(torch.zeros(4), estimate)
jamarshon's avatar
jamarshon committed
153
154
155
156

    def test_istft_requires_overlap_windows(self):
        # the window is size 1 but it hops 20 so there is a gap which throw an error
        stft = torch.zeros((3, 5, 2))
moto's avatar
moto committed
157
        self.assertRaises(RuntimeError, torchaudio.functional.istft, stft, n_fft=4,
jamarshon's avatar
jamarshon committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
                          hop_length=20, win_length=1, window=torch.ones(1))

    def test_istft_requires_nola(self):
        stft = torch.zeros((3, 5, 2))
        kwargs_ok = {
            'n_fft': 4,
            'win_length': 4,
            'window': torch.ones(4),
        }

        kwargs_not_ok = {
            'n_fft': 4,
            'win_length': 4,
            'window': torch.zeros(4),
        }

        # A window of ones meets NOLA but a window of zeros does not. This should
        # throw an error.
        torchaudio.functional.istft(stft, **kwargs_ok)
moto's avatar
moto committed
177
        self.assertRaises(RuntimeError, torchaudio.functional.istft, stft, **kwargs_not_ok)
jamarshon's avatar
jamarshon committed
178
179

    def test_istft_requires_non_empty(self):
moto's avatar
moto committed
180
181
        self.assertRaises(RuntimeError, torchaudio.functional.istft, torch.zeros((3, 0, 2)), 2)
        self.assertRaises(RuntimeError, torchaudio.functional.istft, torch.zeros((0, 3, 2)), 2)
jamarshon's avatar
jamarshon committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

    def _test_istft_of_sine(self, amplitude, L, n):
        # stft of amplitude*sin(2*pi/L*n*x) with the hop length and window size equaling L
        x = torch.arange(2 * L + 1, dtype=torch.get_default_dtype())
        sound = amplitude * torch.sin(2 * math.pi / L * x * n)
        # stft = torch.stft(sound, L, hop_length=L, win_length=L,
        #                   window=torch.ones(L), center=False, normalized=False)
        stft = torch.zeros((L // 2 + 1, 2, 2))
        stft_largest_val = (amplitude * L) / 2.0
        if n < stft.size(0):
            stft[n, :, 1] = -stft_largest_val

        if 0 <= L - n < stft.size(0):
            # symmetric about L // 2
            stft[L - n, :, 1] = stft_largest_val

        estimate = torchaudio.functional.istft(stft, L, hop_length=L, win_length=L,
                                               window=torch.ones(L), center=False, normalized=False)
        # There is a larger error due to the scaling of amplitude
moto's avatar
moto committed
201
        _compare_estimate(sound, estimate, atol=1e-3)
jamarshon's avatar
jamarshon committed
202
203
204
205
206
207
208
209
210
211

    def test_istft_of_sine(self):
        self._test_istft_of_sine(amplitude=123, L=5, n=1)
        self._test_istft_of_sine(amplitude=150, L=5, n=2)
        self._test_istft_of_sine(amplitude=111, L=5, n=3)
        self._test_istft_of_sine(amplitude=160, L=7, n=4)
        self._test_istft_of_sine(amplitude=145, L=8, n=5)
        self._test_istft_of_sine(amplitude=80, L=9, n=6)
        self._test_istft_of_sine(amplitude=99, L=10, n=7)

212
213
214
215
216
217
218
219
220
    def _test_linearity_of_istft(self, data_size, kwargs, atol=1e-6, rtol=1e-8):
        for i in range(self.number_of_trials):
            tensor1 = common_utils.random_float_tensor(i, data_size)
            tensor2 = common_utils.random_float_tensor(i * 2, data_size)
            a, b = torch.rand(2)
            istft1 = torchaudio.functional.istft(tensor1, **kwargs)
            istft2 = torchaudio.functional.istft(tensor2, **kwargs)
            istft = a * istft1 + b * istft2
            estimate = torchaudio.functional.istft(a * tensor1 + b * tensor2, **kwargs)
moto's avatar
moto committed
221
            _compare_estimate(istft, estimate, atol, rtol)
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

    def test_linearity_of_istft1(self):
        # hann_window, centered, normalized, onesided
        kwargs1 = {
            'n_fft': 12,
            'window': torch.hann_window(12),
            'center': True,
            'pad_mode': 'reflect',
            'normalized': True,
            'onesided': True,
        }
        data_size = (2, 7, 7, 2)
        self._test_linearity_of_istft(data_size, kwargs1)

    def test_linearity_of_istft2(self):
        # hann_window, centered, not normalized, not onesided
        kwargs2 = {
            'n_fft': 12,
            'window': torch.hann_window(12),
            'center': True,
            'pad_mode': 'reflect',
            'normalized': False,
            'onesided': False,
        }
        data_size = (2, 12, 7, 2)
        self._test_linearity_of_istft(data_size, kwargs2)

    def test_linearity_of_istft3(self):
        # hamming_window, centered, normalized, not onesided
        kwargs3 = {
            'n_fft': 12,
            'window': torch.hamming_window(12),
            'center': True,
            'pad_mode': 'constant',
            'normalized': True,
            'onesided': False,
        }
        data_size = (2, 12, 7, 2)
        self._test_linearity_of_istft(data_size, kwargs3)

    def test_linearity_of_istft4(self):
        # hamming_window, not centered, not normalized, onesided
        kwargs4 = {
            'n_fft': 12,
            'window': torch.hamming_window(12),
            'center': False,
            'pad_mode': 'constant',
            'normalized': False,
            'onesided': True,
        }
        data_size = (2, 7, 3, 2)
        self._test_linearity_of_istft(data_size, kwargs4, atol=1e-5, rtol=1e-8)

moto's avatar
moto committed
275
276

class TestDetectPitchFrequency(unittest.TestCase):
277
    def test_pitch(self):
278
279
        test_filepath_100 = common_utils.get_asset_path("100Hz_44100Hz_16bit_05sec.wav")
        test_filepath_440 = common_utils.get_asset_path("440Hz_44100Hz_16bit_05sec.wav")
Vincent QB's avatar
Vincent QB committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

        # Files from https://www.mediacollege.com/audio/tone/download/
        tests = [
            (test_filepath_100, 100),
            (test_filepath_440, 440),
        ]

        for filename, freq_ref in tests:
            waveform, sample_rate = torchaudio.load(filename)

            freq = torchaudio.functional.detect_pitch_frequency(waveform, sample_rate)

            threshold = 1
            s = ((freq - freq_ref).abs() > threshold).sum()
            self.assertFalse(s)

moto's avatar
moto committed
296
297

class TestDB_to_amplitude(unittest.TestCase):
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
    def test_DB_to_amplitude(self):
        # Make some noise
        x = torch.rand(1000)
        spectrogram = torchaudio.transforms.Spectrogram()
        spec = spectrogram(x)

        amin = 1e-10
        ref = 1.0
        db_multiplier = math.log10(max(amin, ref))

        # Waveform amplitude -> DB -> amplitude
        multiplier = 20.
        power = 0.5

        db = F.amplitude_to_DB(torch.abs(x), multiplier, amin, db_multiplier, top_db=None)
        x2 = F.DB_to_amplitude(db, ref, power)

315
        torch.testing.assert_allclose(x2, torch.abs(x), atol=5e-5, rtol=1e-5)
316
317
318
319
320

        # Spectrogram amplitude -> DB -> amplitude
        db = F.amplitude_to_DB(spec, multiplier, amin, db_multiplier, top_db=None)
        x2 = F.DB_to_amplitude(db, ref, power)

321
        torch.testing.assert_allclose(x2, spec, atol=5e-5, rtol=1e-5)
322
323
324
325
326
327
328
329

        # Waveform power -> DB -> power
        multiplier = 10.
        power = 1.

        db = F.amplitude_to_DB(x, multiplier, amin, db_multiplier, top_db=None)
        x2 = F.DB_to_amplitude(db, ref, power)

330
        torch.testing.assert_allclose(x2, torch.abs(x), atol=5e-5, rtol=1e-5)
331
332
333
334
335

        # Spectrogram power -> DB -> power
        db = F.amplitude_to_DB(spec, multiplier, amin, db_multiplier, top_db=None)
        x2 = F.DB_to_amplitude(db, ref, power)

336
        torch.testing.assert_allclose(x2, spec, atol=5e-5, rtol=1e-5)
337

338
339
340
341
342
343
344
345
346
347

@pytest.mark.parametrize('complex_tensor', [
    torch.randn(1, 2, 1025, 400, 2),
    torch.randn(1025, 400, 2)
])
@pytest.mark.parametrize('power', [1, 2, 0.7])
def test_complex_norm(complex_tensor, power):
    expected_norm_tensor = complex_tensor.pow(2).sum(-1).pow(power / 2)
    norm_tensor = F.complex_norm(complex_tensor, power)

348
    torch.testing.assert_allclose(norm_tensor, expected_norm_tensor, atol=1e-5, rtol=1e-5)
349
350


351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
@pytest.mark.parametrize('specgram', [
    torch.randn(2, 1025, 400),
    torch.randn(1, 201, 100)
])
@pytest.mark.parametrize('mask_param', [100])
@pytest.mark.parametrize('mask_value', [0., 30.])
@pytest.mark.parametrize('axis', [1, 2])
def test_mask_along_axis(specgram, mask_param, mask_value, axis):

    mask_specgram = F.mask_along_axis(specgram, mask_param, mask_value, axis)

    other_axis = 1 if axis == 2 else 2

    masked_columns = (mask_specgram == mask_value).sum(other_axis)
    num_masked_columns = (masked_columns == mask_specgram.size(other_axis)).sum()
moto's avatar
moto committed
366
    num_masked_columns //= mask_specgram.size(0)
367
368
369
370
371
372
373
374

    assert mask_specgram.size() == specgram.size()
    assert num_masked_columns < mask_param


@pytest.mark.parametrize('mask_param', [100])
@pytest.mark.parametrize('mask_value', [0., 30.])
@pytest.mark.parametrize('axis', [2, 3])
375
376
377
def test_mask_along_axis_iid(mask_param, mask_value, axis):
    torch.random.manual_seed(42)
    specgrams = torch.randn(4, 2, 1025, 400)
378
379
380
381
382
383
384
385
386
387
388
389

    mask_specgrams = F.mask_along_axis_iid(specgrams, mask_param, mask_value, axis)

    other_axis = 2 if axis == 3 else 3

    masked_columns = (mask_specgrams == mask_value).sum(other_axis)
    num_masked_columns = (masked_columns == mask_specgrams.size(other_axis)).sum(-1)

    assert mask_specgrams.size() == specgrams.size()
    assert (num_masked_columns < mask_param).sum() == num_masked_columns.numel()


jamarshon's avatar
jamarshon committed
390
391
if __name__ == '__main__':
    unittest.main()