test_librosa_compatibility.py 14.7 KB
Newer Older
1
"""Test suites for numerical compatibility with librosa"""
2
import os
3
import unittest
4
from distutils.version import StrictVersion
5
6

import torch
7
import torchaudio
8
import torchaudio.functional as F
9
from torchaudio._internal.module_utils import is_module_available
10

11
LIBROSA_AVAILABLE = is_module_available('librosa')
moto's avatar
moto committed
12
13

if LIBROSA_AVAILABLE:
14
15
    import numpy as np
    import librosa
16
    import scipy
17
18
19

import pytest

20
from . import common_utils
21

22

moto's avatar
moto committed
23
@unittest.skipIf(not LIBROSA_AVAILABLE, "Librosa not available")
moto's avatar
moto committed
24
class TestFunctional(common_utils.TorchaudioTestCase):
25
26
    """Test suite for functions in `functional` module."""
    def test_griffinlim(self):
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
        # NOTE: This test is flaky without a fixed random seed
        # See https://github.com/pytorch/audio/issues/382
        torch.random.manual_seed(42)
        tensor = torch.rand((1, 1000))

        n_fft = 400
        ws = 400
        hop = 100
        window = torch.hann_window(ws)
        normalize = False
        momentum = 0.99
        n_iter = 8
        length = 1000
        rand_init = False
        init = 'random' if rand_init else None

        specgram = F.spectrogram(tensor, 0, window, n_fft, hop, ws, 2, normalize).sqrt()
        ta_out = F.griffinlim(specgram, window, n_fft, hop, ws, 1, normalize,
                              n_iter, momentum, length, rand_init)
        lr_out = librosa.griffinlim(specgram.squeeze(0).numpy(), n_iter=n_iter, hop_length=hop,
                                    momentum=momentum, init=init, length=length)
        lr_out = torch.from_numpy(lr_out).unsqueeze(0)

50
        self.assertEqual(ta_out, lr_out, atol=5e-5, rtol=1e-5)
51

Vincent QB's avatar
Vincent QB committed
52
    def _test_create_fb(self, n_mels=40, sample_rate=22050, n_fft=2048, fmin=0.0, fmax=8000.0, norm=None):
53
54
55
56
57
58
        librosa_fb = librosa.filters.mel(sr=sample_rate,
                                         n_fft=n_fft,
                                         n_mels=n_mels,
                                         fmax=fmax,
                                         fmin=fmin,
                                         htk=True,
Vincent QB's avatar
Vincent QB committed
59
                                         norm=norm)
60
61
62
63
        fb = F.create_fb_matrix(sample_rate=sample_rate,
                                n_mels=n_mels,
                                f_max=fmax,
                                f_min=fmin,
Vincent QB's avatar
Vincent QB committed
64
65
                                n_freqs=(n_fft // 2 + 1),
                                norm=norm)
66
67

        for i_mel_bank in range(n_mels):
68
69
            self.assertEqual(
                fb[:, i_mel_bank], torch.tensor(librosa_fb[i_mel_bank]), atol=1e-4, rtol=1e-5)
70
71
72
73
74
75
76
77
78

    def test_create_fb(self):
        self._test_create_fb()
        self._test_create_fb(n_mels=128, sample_rate=44100)
        self._test_create_fb(n_mels=128, fmin=2000.0, fmax=5000.0)
        self._test_create_fb(n_mels=56, fmin=100.0, fmax=9000.0)
        self._test_create_fb(n_mels=56, fmin=800.0, fmax=900.0)
        self._test_create_fb(n_mels=56, fmin=1900.0, fmax=900.0)
        self._test_create_fb(n_mels=10, fmin=1900.0, fmax=900.0)
79
80
        if StrictVersion(librosa.__version__) < StrictVersion("0.7.2"):
            return
Vincent QB's avatar
Vincent QB committed
81
82
83
84
85
86
        self._test_create_fb(n_mels=128, sample_rate=44100, norm="slaney")
        self._test_create_fb(n_mels=128, fmin=2000.0, fmax=5000.0, norm="slaney")
        self._test_create_fb(n_mels=56, fmin=100.0, fmax=9000.0, norm="slaney")
        self._test_create_fb(n_mels=56, fmin=800.0, fmax=900.0, norm="slaney")
        self._test_create_fb(n_mels=56, fmin=1900.0, fmax=900.0, norm="slaney")
        self._test_create_fb(n_mels=10, fmin=1900.0, fmax=900.0, norm="slaney")
87
88
89
90
91
92
93
94
95
96
97
98
99

    def test_amplitude_to_DB(self):
        spec = torch.rand((6, 201))

        amin = 1e-10
        db_multiplier = 0.0
        top_db = 80.0

        # Power to DB
        multiplier = 10.0

        ta_out = F.amplitude_to_DB(spec, multiplier, amin, db_multiplier, top_db)
        lr_out = librosa.core.power_to_db(spec.numpy())
100
        lr_out = torch.from_numpy(lr_out)
101

102
        self.assertEqual(ta_out, lr_out, atol=5e-5, rtol=1e-5)
103
104
105
106
107
108

        # Amplitude to DB
        multiplier = 20.0

        ta_out = F.amplitude_to_DB(spec, multiplier, amin, db_multiplier, top_db)
        lr_out = librosa.core.amplitude_to_db(spec.numpy())
109
        lr_out = torch.from_numpy(lr_out)
110

111
        self.assertEqual(ta_out, lr_out, atol=5e-5, rtol=1e-5)
112
113
114
115
116
117
118


@pytest.mark.parametrize('complex_specgrams', [
    torch.randn(2, 1025, 400, 2)
])
@pytest.mark.parametrize('rate', [0.5, 1.01, 1.3])
@pytest.mark.parametrize('hop_length', [256])
moto's avatar
moto committed
119
@unittest.skipIf(not LIBROSA_AVAILABLE, "Librosa not available")
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
def test_phase_vocoder(complex_specgrams, rate, hop_length):
    # Due to cummulative sum, numerical error in using torch.float32 will
    # result in bottom right values of the stretched sectrogram to not
    # match with librosa.

    complex_specgrams = complex_specgrams.type(torch.float64)
    phase_advance = torch.linspace(0, np.pi * hop_length, complex_specgrams.shape[-3], dtype=torch.float64)[..., None]

    complex_specgrams_stretch = F.phase_vocoder(complex_specgrams, rate=rate, phase_advance=phase_advance)

    # == Test shape
    expected_size = list(complex_specgrams.size())
    expected_size[-2] = int(np.ceil(expected_size[-2] / rate))

    assert complex_specgrams.dim() == complex_specgrams_stretch.dim()
    assert complex_specgrams_stretch.size() == torch.Size(expected_size)

    # == Test values
    index = [0] * (complex_specgrams.dim() - 3) + [slice(None)] * 3
    mono_complex_specgram = complex_specgrams[index].numpy()
    mono_complex_specgram = mono_complex_specgram[..., 0] + \
        mono_complex_specgram[..., 1] * 1j
    expected_complex_stretch = librosa.phase_vocoder(mono_complex_specgram,
                                                     rate=rate,
                                                     hop_length=hop_length)

    complex_stretch = complex_specgrams_stretch[index].numpy()
    complex_stretch = complex_stretch[..., 0] + 1j * complex_stretch[..., 1]

    assert np.allclose(complex_stretch, expected_complex_stretch, atol=1e-5)
150
151
152


def _load_audio_asset(*asset_paths, **kwargs):
153
    file_path = common_utils.get_asset_path(*asset_paths)
154
155
156
157
    sound, sample_rate = torchaudio.load(file_path, **kwargs)
    return sound, sample_rate


moto's avatar
moto committed
158
@unittest.skipIf(not LIBROSA_AVAILABLE, "Librosa not available")
moto's avatar
moto committed
159
class TestTransforms(common_utils.TorchaudioTestCase):
160
    """Test suite for functions in `transforms` module."""
161
    def assert_compatibilities(self, n_fft, hop_length, power, n_mels, n_mfcc, sample_rate):
moto's avatar
moto committed
162
        common_utils.set_audio_backend('default')
163
164
        path = common_utils.get_asset_path('sinewave.wav')
        sound, sample_rate = common_utils.load_wav(path)
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
        sound_librosa = sound.cpu().numpy().squeeze()  # (64000)

        # test core spectrogram
        spect_transform = torchaudio.transforms.Spectrogram(
            n_fft=n_fft, hop_length=hop_length, power=power)
        out_librosa, _ = librosa.core.spectrum._spectrogram(
            y=sound_librosa, n_fft=n_fft, hop_length=hop_length, power=power)

        out_torch = spect_transform(sound).squeeze().cpu()
        self.assertEqual(out_torch, torch.from_numpy(out_librosa), atol=1e-5, rtol=1e-5)

        # test mel spectrogram
        melspect_transform = torchaudio.transforms.MelSpectrogram(
            sample_rate=sample_rate, window_fn=torch.hann_window,
            hop_length=hop_length, n_mels=n_mels, n_fft=n_fft)
        librosa_mel = librosa.feature.melspectrogram(
            y=sound_librosa, sr=sample_rate, n_fft=n_fft,
            hop_length=hop_length, n_mels=n_mels, htk=True, norm=None)
        librosa_mel_tensor = torch.from_numpy(librosa_mel)
        torch_mel = melspect_transform(sound).squeeze().cpu()
        self.assertEqual(
            torch_mel.type(librosa_mel_tensor.dtype), librosa_mel_tensor, atol=5e-3, rtol=1e-5)

        # test s2db
        power_to_db_transform = torchaudio.transforms.AmplitudeToDB('power', 80.)
        power_to_db_torch = power_to_db_transform(spect_transform(sound)).squeeze().cpu()
        power_to_db_librosa = librosa.core.spectrum.power_to_db(out_librosa)
        self.assertEqual(power_to_db_torch, torch.from_numpy(power_to_db_librosa), atol=5e-3, rtol=1e-5)

        mag_to_db_transform = torchaudio.transforms.AmplitudeToDB('magnitude', 80.)
        mag_to_db_torch = mag_to_db_transform(torch.abs(sound)).squeeze().cpu()
        mag_to_db_librosa = librosa.core.spectrum.amplitude_to_db(sound_librosa)
        self.assertEqual(mag_to_db_torch, torch.from_numpy(mag_to_db_librosa), atol=5e-3, rtol=1e-5)

        power_to_db_torch = power_to_db_transform(melspect_transform(sound)).squeeze().cpu()
        db_librosa = librosa.core.spectrum.power_to_db(librosa_mel)
        db_librosa_tensor = torch.from_numpy(db_librosa)
        self.assertEqual(
            power_to_db_torch.type(db_librosa_tensor.dtype), db_librosa_tensor, atol=5e-3, rtol=1e-5)

        # test MFCC
        melkwargs = {'hop_length': hop_length, 'n_fft': n_fft}
        mfcc_transform = torchaudio.transforms.MFCC(
            sample_rate=sample_rate, n_mfcc=n_mfcc, norm='ortho', melkwargs=melkwargs)

        # librosa.feature.mfcc doesn't pass kwargs properly since some of the
        # kwargs for melspectrogram and mfcc are the same. We just follow the
        # function body in
        # https://librosa.github.io/librosa/_modules/librosa/feature/spectral.html#melspectrogram
        # to mirror this function call with correct args:
        #
        # librosa_mfcc = librosa.feature.mfcc(
        #     y=sound_librosa, sr=sample_rate, n_mfcc = n_mfcc,
        #     hop_length=hop_length, n_fft=n_fft, htk=True, norm=None, n_mels=n_mels)

        librosa_mfcc = scipy.fftpack.dct(db_librosa, axis=0, type=2, norm='ortho')[:n_mfcc]
        librosa_mfcc_tensor = torch.from_numpy(librosa_mfcc)
        torch_mfcc = mfcc_transform(sound).squeeze().cpu()

        self.assertEqual(
            torch_mfcc.type(librosa_mfcc_tensor.dtype), librosa_mfcc_tensor, atol=5e-3, rtol=1e-5)

227
228
229
230
231
232
233
234
235
    def test_basics1(self):
        kwargs = {
            'n_fft': 400,
            'hop_length': 200,
            'power': 2.0,
            'n_mels': 128,
            'n_mfcc': 40,
            'sample_rate': 16000
        }
236
        self.assert_compatibilities(**kwargs)
237
238
239
240
241
242
243
244
245
246

    def test_basics2(self):
        kwargs = {
            'n_fft': 600,
            'hop_length': 100,
            'power': 2.0,
            'n_mels': 128,
            'n_mfcc': 20,
            'sample_rate': 16000
        }
247
        self.assert_compatibilities(**kwargs)
248

moto's avatar
moto committed
249
250
    # NOTE: Test passes offline, but fails on TravisCI (and CircleCI), see #372.
    @unittest.skipIf('CI' in os.environ, 'Test is known to fail on CI')
251
252
253
254
255
256
257
258
259
    def test_basics3(self):
        kwargs = {
            'n_fft': 200,
            'hop_length': 50,
            'power': 2.0,
            'n_mels': 128,
            'n_mfcc': 50,
            'sample_rate': 24000
        }
260
        self.assert_compatibilities(**kwargs)
261
262
263
264
265
266
267
268
269
270

    def test_basics4(self):
        kwargs = {
            'n_fft': 400,
            'hop_length': 200,
            'power': 3.0,
            'n_mels': 128,
            'n_mfcc': 40,
            'sample_rate': 16000
        }
271
        self.assert_compatibilities(**kwargs)
272
273
274
275
276
277

    def test_MelScale(self):
        """MelScale transform is comparable to that of librosa"""
        n_fft = 2048
        n_mels = 256
        hop_length = n_fft // 4
moto's avatar
moto committed
278
279
        sample_rate = 44100
        sound = common_utils.get_whitenoise(sample_rate=sample_rate, duration=60)
280
281
282
283
284
285
286
287
288
289
290
        sound = sound.mean(dim=0, keepdim=True)
        spec_ta = F.spectrogram(
            sound, pad=0, window=torch.hann_window(n_fft), n_fft=n_fft,
            hop_length=hop_length, win_length=n_fft, power=2, normalized=False)
        spec_lr = spec_ta.cpu().numpy().squeeze()
        # Perform MelScale with torchaudio and librosa
        melspec_ta = torchaudio.transforms.MelScale(n_mels=n_mels, sample_rate=sample_rate)(spec_ta)
        melspec_lr = librosa.feature.melspectrogram(
            S=spec_lr, sr=sample_rate, n_fft=n_fft, hop_length=hop_length,
            win_length=n_fft, center=True, window='hann', n_mels=n_mels, htk=True, norm=None)
        # Note: Using relaxed rtol instead of atol
291
        self.assertEqual(melspec_ta, torch.from_numpy(melspec_lr[None, ...]), atol=1e-8, rtol=1e-3)
292
293
294
295
296
297
298
299
300

    def test_InverseMelScale(self):
        """InverseMelScale transform is comparable to that of librosa"""
        n_fft = 2048
        n_mels = 256
        n_stft = n_fft // 2 + 1
        hop_length = n_fft // 4

        # Prepare mel spectrogram input. We use torchaudio to compute one.
301
302
303
        path = common_utils.get_asset_path('steam-train-whistle-daniel_simon.wav')
        sound, sample_rate = common_utils.load_wav(path)
        sound = sound[:, 2**10:2**10 + 2**14]
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
        sound = sound.mean(dim=0, keepdim=True)
        spec_orig = F.spectrogram(
            sound, pad=0, window=torch.hann_window(n_fft), n_fft=n_fft,
            hop_length=hop_length, win_length=n_fft, power=2, normalized=False)
        melspec_ta = torchaudio.transforms.MelScale(n_mels=n_mels, sample_rate=sample_rate)(spec_orig)
        melspec_lr = melspec_ta.cpu().numpy().squeeze()
        # Perform InverseMelScale with torch audio and librosa
        spec_ta = torchaudio.transforms.InverseMelScale(
            n_stft, n_mels=n_mels, sample_rate=sample_rate)(melspec_ta)
        spec_lr = librosa.feature.inverse.mel_to_stft(
            melspec_lr, sr=sample_rate, n_fft=n_fft, power=2.0, htk=True, norm=None)
        spec_lr = torch.from_numpy(spec_lr[None, ...])

        # Align dimensions
        # librosa does not return power spectrogram while torchaudio returns power spectrogram
        spec_orig = spec_orig.sqrt()
        spec_ta = spec_ta.sqrt()

        threshold = 2.0
        # This threshold was choosen empirically, based on the following observation
        #
        # torch.dist(spec_lr, spec_ta, p=float('inf'))
        # >>> tensor(1.9666)
        #
        # The spectrograms reconstructed by librosa and torchaudio are not comparable elementwise.
        # This is because they use different approximation algorithms and resulting values can live
        # in different magnitude. (although most of them are very close)
        # See
        # https://github.com/pytorch/audio/pull/366 for the discussion of the choice of algorithm
        # https://github.com/pytorch/audio/pull/448/files#r385747021 for the distribution of P-inf
        # distance over frequencies.
335
        self.assertEqual(spec_ta, spec_lr, atol=threshold, rtol=1e-5)
336
337
338
339
340
341
342
343
344
345
346

        threshold = 1700.0
        # This threshold was choosen empirically, based on the following observations
        #
        # torch.dist(spec_orig, spec_ta, p=1)
        # >>> tensor(1644.3516)
        # torch.dist(spec_orig, spec_lr, p=1)
        # >>> tensor(1420.7103)
        # torch.dist(spec_lr, spec_ta, p=1)
        # >>> tensor(943.2759)
        assert torch.dist(spec_orig, spec_ta, p=1) < threshold