test_librosa_compatibility.py 14.7 KB
Newer Older
1
"""Test suites for numerical compatibility with librosa"""
2
import os
3
4
5
import unittest

import torch
6
import torchaudio
7
8
9
10
11
12
import torchaudio.functional as F
from torchaudio.common_utils import IMPORT_LIBROSA

if IMPORT_LIBROSA:
    import numpy as np
    import librosa
13
    import scipy
14
15
16

import pytest

17
18
import common_utils

19

20
21
class _LibrosaMixin:
    """Automatically skip tests if librosa is not available"""
22
    def setUp(self):
23
        super().setUp()
24
25
26
27
        if not IMPORT_LIBROSA:
            raise unittest.SkipTest('Librosa not available')


28
29
30
class TestFunctional(_LibrosaMixin, unittest.TestCase):
    """Test suite for functions in `functional` module."""
    def test_griffinlim(self):
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
        # NOTE: This test is flaky without a fixed random seed
        # See https://github.com/pytorch/audio/issues/382
        torch.random.manual_seed(42)
        tensor = torch.rand((1, 1000))

        n_fft = 400
        ws = 400
        hop = 100
        window = torch.hann_window(ws)
        normalize = False
        momentum = 0.99
        n_iter = 8
        length = 1000
        rand_init = False
        init = 'random' if rand_init else None

        specgram = F.spectrogram(tensor, 0, window, n_fft, hop, ws, 2, normalize).sqrt()
        ta_out = F.griffinlim(specgram, window, n_fft, hop, ws, 1, normalize,
                              n_iter, momentum, length, rand_init)
        lr_out = librosa.griffinlim(specgram.squeeze(0).numpy(), n_iter=n_iter, hop_length=hop,
                                    momentum=momentum, init=init, length=length)
        lr_out = torch.from_numpy(lr_out).unsqueeze(0)

54
        torch.testing.assert_allclose(ta_out, lr_out, atol=5e-5, rtol=1e-5)
55

Vincent QB's avatar
Vincent QB committed
56
    def _test_create_fb(self, n_mels=40, sample_rate=22050, n_fft=2048, fmin=0.0, fmax=8000.0, norm=None):
57
58
59
60
61
62
        librosa_fb = librosa.filters.mel(sr=sample_rate,
                                         n_fft=n_fft,
                                         n_mels=n_mels,
                                         fmax=fmax,
                                         fmin=fmin,
                                         htk=True,
Vincent QB's avatar
Vincent QB committed
63
                                         norm=norm)
64
65
66
67
        fb = F.create_fb_matrix(sample_rate=sample_rate,
                                n_mels=n_mels,
                                f_max=fmax,
                                f_min=fmin,
Vincent QB's avatar
Vincent QB committed
68
69
                                n_freqs=(n_fft // 2 + 1),
                                norm=norm)
70
71

        for i_mel_bank in range(n_mels):
72
73
            torch.testing.assert_allclose(fb[:, i_mel_bank], torch.tensor(librosa_fb[i_mel_bank]),
                                          atol=1e-4, rtol=1e-5)
74
75
76
77
78
79
80
81
82

    def test_create_fb(self):
        self._test_create_fb()
        self._test_create_fb(n_mels=128, sample_rate=44100)
        self._test_create_fb(n_mels=128, fmin=2000.0, fmax=5000.0)
        self._test_create_fb(n_mels=56, fmin=100.0, fmax=9000.0)
        self._test_create_fb(n_mels=56, fmin=800.0, fmax=900.0)
        self._test_create_fb(n_mels=56, fmin=1900.0, fmax=900.0)
        self._test_create_fb(n_mels=10, fmin=1900.0, fmax=900.0)
Vincent QB's avatar
Vincent QB committed
83
84
85
86
87
88
        self._test_create_fb(n_mels=128, sample_rate=44100, norm="slaney")
        self._test_create_fb(n_mels=128, fmin=2000.0, fmax=5000.0, norm="slaney")
        self._test_create_fb(n_mels=56, fmin=100.0, fmax=9000.0, norm="slaney")
        self._test_create_fb(n_mels=56, fmin=800.0, fmax=900.0, norm="slaney")
        self._test_create_fb(n_mels=56, fmin=1900.0, fmax=900.0, norm="slaney")
        self._test_create_fb(n_mels=10, fmin=1900.0, fmax=900.0, norm="slaney")
89
90
91
92
93
94
95
96
97
98
99
100
101

    def test_amplitude_to_DB(self):
        spec = torch.rand((6, 201))

        amin = 1e-10
        db_multiplier = 0.0
        top_db = 80.0

        # Power to DB
        multiplier = 10.0

        ta_out = F.amplitude_to_DB(spec, multiplier, amin, db_multiplier, top_db)
        lr_out = librosa.core.power_to_db(spec.numpy())
102
        lr_out = torch.from_numpy(lr_out)
103

104
        torch.testing.assert_allclose(ta_out, lr_out, atol=5e-5, rtol=1e-5)
105
106
107
108
109
110

        # Amplitude to DB
        multiplier = 20.0

        ta_out = F.amplitude_to_DB(spec, multiplier, amin, db_multiplier, top_db)
        lr_out = librosa.core.amplitude_to_db(spec.numpy())
111
        lr_out = torch.from_numpy(lr_out)
112

113
        torch.testing.assert_allclose(ta_out, lr_out, atol=5e-5, rtol=1e-5)
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155


@pytest.mark.parametrize('complex_specgrams', [
    torch.randn(2, 1025, 400, 2)
])
@pytest.mark.parametrize('rate', [0.5, 1.01, 1.3])
@pytest.mark.parametrize('hop_length', [256])
def test_phase_vocoder(complex_specgrams, rate, hop_length):

    # Using a decorator here causes parametrize to fail on Python 2
    if not IMPORT_LIBROSA:
        raise unittest.SkipTest('Librosa is not available')

    # Due to cummulative sum, numerical error in using torch.float32 will
    # result in bottom right values of the stretched sectrogram to not
    # match with librosa.

    complex_specgrams = complex_specgrams.type(torch.float64)
    phase_advance = torch.linspace(0, np.pi * hop_length, complex_specgrams.shape[-3], dtype=torch.float64)[..., None]

    complex_specgrams_stretch = F.phase_vocoder(complex_specgrams, rate=rate, phase_advance=phase_advance)

    # == Test shape
    expected_size = list(complex_specgrams.size())
    expected_size[-2] = int(np.ceil(expected_size[-2] / rate))

    assert complex_specgrams.dim() == complex_specgrams_stretch.dim()
    assert complex_specgrams_stretch.size() == torch.Size(expected_size)

    # == Test values
    index = [0] * (complex_specgrams.dim() - 3) + [slice(None)] * 3
    mono_complex_specgram = complex_specgrams[index].numpy()
    mono_complex_specgram = mono_complex_specgram[..., 0] + \
        mono_complex_specgram[..., 1] * 1j
    expected_complex_stretch = librosa.phase_vocoder(mono_complex_specgram,
                                                     rate=rate,
                                                     hop_length=hop_length)

    complex_stretch = complex_specgrams_stretch[index].numpy()
    complex_stretch = complex_stretch[..., 0] + 1j * complex_stretch[..., 1]

    assert np.allclose(complex_stretch, expected_complex_stretch, atol=1e-5)
156
157
158


def _load_audio_asset(*asset_paths, **kwargs):
159
    file_path = common_utils.get_asset_path(*asset_paths)
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    sound, sample_rate = torchaudio.load(file_path, **kwargs)
    return sound, sample_rate


def _test_compatibilities(n_fft, hop_length, power, n_mels, n_mfcc, sample_rate):
    sound, sample_rate = _load_audio_asset('sinewave.wav')
    sound_librosa = sound.cpu().numpy().squeeze()  # (64000)

    # test core spectrogram
    spect_transform = torchaudio.transforms.Spectrogram(
        n_fft=n_fft, hop_length=hop_length, power=power)
    out_librosa, _ = librosa.core.spectrum._spectrogram(
        y=sound_librosa, n_fft=n_fft, hop_length=hop_length, power=power)

    out_torch = spect_transform(sound).squeeze().cpu()
175
    torch.testing.assert_allclose(out_torch, torch.from_numpy(out_librosa), atol=1e-5, rtol=1e-5)
176
177
178
179
180
181
182
183
184
185

    # test mel spectrogram
    melspect_transform = torchaudio.transforms.MelSpectrogram(
        sample_rate=sample_rate, window_fn=torch.hann_window,
        hop_length=hop_length, n_mels=n_mels, n_fft=n_fft)
    librosa_mel = librosa.feature.melspectrogram(
        y=sound_librosa, sr=sample_rate, n_fft=n_fft,
        hop_length=hop_length, n_mels=n_mels, htk=True, norm=None)
    librosa_mel_tensor = torch.from_numpy(librosa_mel)
    torch_mel = melspect_transform(sound).squeeze().cpu()
186
187
    torch.testing.assert_allclose(
        torch_mel.type(librosa_mel_tensor.dtype), librosa_mel_tensor, atol=5e-3, rtol=1e-5)
188
189
190
191
192

    # test s2db
    power_to_db_transform = torchaudio.transforms.AmplitudeToDB('power', 80.)
    power_to_db_torch = power_to_db_transform(spect_transform(sound)).squeeze().cpu()
    power_to_db_librosa = librosa.core.spectrum.power_to_db(out_librosa)
193
    torch.testing.assert_allclose(power_to_db_torch, torch.from_numpy(power_to_db_librosa), atol=5e-3, rtol=1e-5)
194
195
196
197

    mag_to_db_transform = torchaudio.transforms.AmplitudeToDB('magnitude', 80.)
    mag_to_db_torch = mag_to_db_transform(torch.abs(sound)).squeeze().cpu()
    mag_to_db_librosa = librosa.core.spectrum.amplitude_to_db(sound_librosa)
198
    torch.testing.assert_allclose(mag_to_db_torch, torch.from_numpy(mag_to_db_librosa), atol=5e-3, rtol=1e-5)
199
200
201
202

    power_to_db_torch = power_to_db_transform(melspect_transform(sound)).squeeze().cpu()
    db_librosa = librosa.core.spectrum.power_to_db(librosa_mel)
    db_librosa_tensor = torch.from_numpy(db_librosa)
203
204
    torch.testing.assert_allclose(
        power_to_db_torch.type(db_librosa_tensor.dtype), db_librosa_tensor, atol=5e-3, rtol=1e-5)
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

    # test MFCC
    melkwargs = {'hop_length': hop_length, 'n_fft': n_fft}
    mfcc_transform = torchaudio.transforms.MFCC(
        sample_rate=sample_rate, n_mfcc=n_mfcc, norm='ortho', melkwargs=melkwargs)

    # librosa.feature.mfcc doesn't pass kwargs properly since some of the
    # kwargs for melspectrogram and mfcc are the same. We just follow the
    # function body in
    # https://librosa.github.io/librosa/_modules/librosa/feature/spectral.html#melspectrogram
    # to mirror this function call with correct args:
    #
    # librosa_mfcc = librosa.feature.mfcc(
    #     y=sound_librosa, sr=sample_rate, n_mfcc = n_mfcc,
    #     hop_length=hop_length, n_fft=n_fft, htk=True, norm=None, n_mels=n_mels)

    librosa_mfcc = scipy.fftpack.dct(db_librosa, axis=0, type=2, norm='ortho')[:n_mfcc]
    librosa_mfcc_tensor = torch.from_numpy(librosa_mfcc)
    torch_mfcc = mfcc_transform(sound).squeeze().cpu()

225
226
    torch.testing.assert_allclose(
        torch_mfcc.type(librosa_mfcc_tensor.dtype), librosa_mfcc_tensor, atol=5e-3, rtol=1e-5)
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252


class TestTransforms(_LibrosaMixin, unittest.TestCase):
    """Test suite for functions in `transforms` module."""
    def test_basics1(self):
        kwargs = {
            'n_fft': 400,
            'hop_length': 200,
            'power': 2.0,
            'n_mels': 128,
            'n_mfcc': 40,
            'sample_rate': 16000
        }
        _test_compatibilities(**kwargs)

    def test_basics2(self):
        kwargs = {
            'n_fft': 600,
            'hop_length': 100,
            'power': 2.0,
            'n_mels': 128,
            'n_mfcc': 20,
            'sample_rate': 16000
        }
        _test_compatibilities(**kwargs)

moto's avatar
moto committed
253
254
    # NOTE: Test passes offline, but fails on TravisCI (and CircleCI), see #372.
    @unittest.skipIf('CI' in os.environ, 'Test is known to fail on CI')
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
    def test_basics3(self):
        kwargs = {
            'n_fft': 200,
            'hop_length': 50,
            'power': 2.0,
            'n_mels': 128,
            'n_mfcc': 50,
            'sample_rate': 24000
        }
        _test_compatibilities(**kwargs)

    def test_basics4(self):
        kwargs = {
            'n_fft': 400,
            'hop_length': 200,
            'power': 3.0,
            'n_mels': 128,
            'n_mfcc': 40,
            'sample_rate': 16000
        }
        _test_compatibilities(**kwargs)

    @unittest.skipIf("sox" not in common_utils.BACKENDS, "sox not available")
    @common_utils.AudioBackendScope("sox")
    def test_MelScale(self):
        """MelScale transform is comparable to that of librosa"""
        n_fft = 2048
        n_mels = 256
        hop_length = n_fft // 4

        # Prepare spectrogram input. We use torchaudio to compute one.
        sound, sample_rate = _load_audio_asset('whitenoise_1min.mp3')
        sound = sound.mean(dim=0, keepdim=True)
        spec_ta = F.spectrogram(
            sound, pad=0, window=torch.hann_window(n_fft), n_fft=n_fft,
            hop_length=hop_length, win_length=n_fft, power=2, normalized=False)
        spec_lr = spec_ta.cpu().numpy().squeeze()
        # Perform MelScale with torchaudio and librosa
        melspec_ta = torchaudio.transforms.MelScale(n_mels=n_mels, sample_rate=sample_rate)(spec_ta)
        melspec_lr = librosa.feature.melspectrogram(
            S=spec_lr, sr=sample_rate, n_fft=n_fft, hop_length=hop_length,
            win_length=n_fft, center=True, window='hann', n_mels=n_mels, htk=True, norm=None)
        # Note: Using relaxed rtol instead of atol
298
        torch.testing.assert_allclose(melspec_ta, torch.from_numpy(melspec_lr[None, ...]), atol=1e-8, rtol=1e-3)
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

    def test_InverseMelScale(self):
        """InverseMelScale transform is comparable to that of librosa"""
        n_fft = 2048
        n_mels = 256
        n_stft = n_fft // 2 + 1
        hop_length = n_fft // 4

        # Prepare mel spectrogram input. We use torchaudio to compute one.
        sound, sample_rate = _load_audio_asset(
            'steam-train-whistle-daniel_simon.wav', offset=2**10, num_frames=2**14)
        sound = sound.mean(dim=0, keepdim=True)
        spec_orig = F.spectrogram(
            sound, pad=0, window=torch.hann_window(n_fft), n_fft=n_fft,
            hop_length=hop_length, win_length=n_fft, power=2, normalized=False)
        melspec_ta = torchaudio.transforms.MelScale(n_mels=n_mels, sample_rate=sample_rate)(spec_orig)
        melspec_lr = melspec_ta.cpu().numpy().squeeze()
        # Perform InverseMelScale with torch audio and librosa
        spec_ta = torchaudio.transforms.InverseMelScale(
            n_stft, n_mels=n_mels, sample_rate=sample_rate)(melspec_ta)
        spec_lr = librosa.feature.inverse.mel_to_stft(
            melspec_lr, sr=sample_rate, n_fft=n_fft, power=2.0, htk=True, norm=None)
        spec_lr = torch.from_numpy(spec_lr[None, ...])

        # Align dimensions
        # librosa does not return power spectrogram while torchaudio returns power spectrogram
        spec_orig = spec_orig.sqrt()
        spec_ta = spec_ta.sqrt()

        threshold = 2.0
        # This threshold was choosen empirically, based on the following observation
        #
        # torch.dist(spec_lr, spec_ta, p=float('inf'))
        # >>> tensor(1.9666)
        #
        # The spectrograms reconstructed by librosa and torchaudio are not comparable elementwise.
        # This is because they use different approximation algorithms and resulting values can live
        # in different magnitude. (although most of them are very close)
        # See
        # https://github.com/pytorch/audio/pull/366 for the discussion of the choice of algorithm
        # https://github.com/pytorch/audio/pull/448/files#r385747021 for the distribution of P-inf
        # distance over frequencies.
341
        torch.testing.assert_allclose(spec_ta, spec_lr, atol=threshold, rtol=1e-5)
342
343
344
345
346
347
348
349
350
351
352

        threshold = 1700.0
        # This threshold was choosen empirically, based on the following observations
        #
        # torch.dist(spec_orig, spec_ta, p=1)
        # >>> tensor(1644.3516)
        # torch.dist(spec_orig, spec_lr, p=1)
        # >>> tensor(1420.7103)
        # torch.dist(spec_lr, spec_ta, p=1)
        # >>> tensor(943.2759)
        assert torch.dist(spec_orig, spec_ta, p=1) < threshold
Vincent QB's avatar
Vincent QB committed
353
354
355
356


if __name__ == '__main__':
    unittest.main()