nnp_training_force.py 11.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# -*- coding: utf-8 -*-
"""
.. _force-training-example:

Train Neural Network Potential To Both Energies and Forces
==========================================================

We have seen how to train a neural network potential by manually writing
training loop in :ref:`training-example`. This tutorial shows how to modify
that script to train to force.
"""

###############################################################################
# Most part of the script are the same as :ref:`training-example`, we will omit
# the comments for these parts. Please refer to :ref:`training-example` for more
# information
17

18
19
20
21
22
23
24
import torch
import torchani
import os
import math
import torch.utils.tensorboard
import tqdm

Ignacio Pickering's avatar
Ignacio Pickering committed
25
26
27
# helper function to convert energy unit from Hartree to kcal/mol
from torchani.units import hartree2kcalmol

28
29
30
31
32
33
34
35
36
37
38
39
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

Rcr = 5.2000e+00
Rca = 3.5000e+00
EtaR = torch.tensor([1.6000000e+01], device=device)
ShfR = torch.tensor([9.0000000e-01, 1.1687500e+00, 1.4375000e+00, 1.7062500e+00, 1.9750000e+00, 2.2437500e+00, 2.5125000e+00, 2.7812500e+00, 3.0500000e+00, 3.3187500e+00, 3.5875000e+00, 3.8562500e+00, 4.1250000e+00, 4.3937500e+00, 4.6625000e+00, 4.9312500e+00], device=device)
Zeta = torch.tensor([3.2000000e+01], device=device)
ShfZ = torch.tensor([1.9634954e-01, 5.8904862e-01, 9.8174770e-01, 1.3744468e+00, 1.7671459e+00, 2.1598449e+00, 2.5525440e+00, 2.9452431e+00], device=device)
EtaA = torch.tensor([8.0000000e+00], device=device)
ShfA = torch.tensor([9.0000000e-01, 1.5500000e+00, 2.2000000e+00, 2.8500000e+00], device=device)
num_species = 4
aev_computer = torchani.AEVComputer(Rcr, Rca, EtaR, ShfR, EtaA, Zeta, ShfA, ShfZ, num_species)
40
energy_shifter = torchani.utils.EnergyShifter(None)
41
species_to_tensor = torchani.utils.ChemicalSymbolsToInts(['H', 'C', 'N', 'O'])
42
43
44
45
46
47


try:
    path = os.path.dirname(os.path.realpath(__file__))
except NameError:
    path = os.getcwd()
48
dspath = os.path.join(path, '../dataset/ani-1x/sample.h5')
49
50
51

batch_size = 2560

52
training, validation = torchani.data.load(dspath).subtract_self_energies(energy_shifter).species_to_indices().shuffle().split(0.8, None)
53
54
training = training.collate(batch_size).cache()
validation = validation.collate(batch_size).cache()
55

56
57
print('Self atomic energies: ', energy_shifter.self_energies)

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
###############################################################################
# The code to define networks, optimizers, are mostly the same

H_network = torch.nn.Sequential(
    torch.nn.Linear(384, 160),
    torch.nn.CELU(0.1),
    torch.nn.Linear(160, 128),
    torch.nn.CELU(0.1),
    torch.nn.Linear(128, 96),
    torch.nn.CELU(0.1),
    torch.nn.Linear(96, 1)
)

C_network = torch.nn.Sequential(
    torch.nn.Linear(384, 144),
    torch.nn.CELU(0.1),
    torch.nn.Linear(144, 112),
    torch.nn.CELU(0.1),
    torch.nn.Linear(112, 96),
    torch.nn.CELU(0.1),
    torch.nn.Linear(96, 1)
)

N_network = torch.nn.Sequential(
    torch.nn.Linear(384, 128),
    torch.nn.CELU(0.1),
    torch.nn.Linear(128, 112),
    torch.nn.CELU(0.1),
    torch.nn.Linear(112, 96),
    torch.nn.CELU(0.1),
    torch.nn.Linear(96, 1)
)

O_network = torch.nn.Sequential(
    torch.nn.Linear(384, 128),
    torch.nn.CELU(0.1),
    torch.nn.Linear(128, 112),
    torch.nn.CELU(0.1),
    torch.nn.Linear(112, 96),
    torch.nn.CELU(0.1),
    torch.nn.Linear(96, 1)
)

nn = torchani.ANIModel([H_network, C_network, N_network, O_network])
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
print(nn)

###############################################################################
# Initialize the weights and biases.
#
# .. note::
#   Pytorch default initialization for the weights and biases in linear layers
#   is Kaiming uniform. See: `TORCH.NN.MODULES.LINEAR`_
#   We initialize the weights similarly but from the normal distribution.
#   The biases were initialized to zero.
#
# .. _TORCH.NN.MODULES.LINEAR:
#   https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html#Linear


def init_params(m):
    if isinstance(m, torch.nn.Linear):
        torch.nn.init.kaiming_normal_(m.weight, a=1.0)
        torch.nn.init.zeros_(m.bias)


nn.apply(init_params)

###############################################################################
# Let's now create a pipeline of AEV Computer --> Neural Networks.
127
model = torchani.nn.Sequential(aev_computer, nn).to(device)
128
129

###############################################################################
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Here we will use Adam with weight decay for the weights and Stochastic Gradient
# Descent for biases.

AdamW = torchani.optim.AdamW([
    # H networks
    {'params': [H_network[0].weight]},
    {'params': [H_network[2].weight], 'weight_decay': 0.00001},
    {'params': [H_network[4].weight], 'weight_decay': 0.000001},
    {'params': [H_network[6].weight]},
    # C networks
    {'params': [C_network[0].weight]},
    {'params': [C_network[2].weight], 'weight_decay': 0.00001},
    {'params': [C_network[4].weight], 'weight_decay': 0.000001},
    {'params': [C_network[6].weight]},
    # N networks
    {'params': [N_network[0].weight]},
    {'params': [N_network[2].weight], 'weight_decay': 0.00001},
    {'params': [N_network[4].weight], 'weight_decay': 0.000001},
    {'params': [N_network[6].weight]},
    # O networks
    {'params': [O_network[0].weight]},
    {'params': [O_network[2].weight], 'weight_decay': 0.00001},
    {'params': [O_network[4].weight], 'weight_decay': 0.000001},
    {'params': [O_network[6].weight]},
])

SGD = torch.optim.SGD([
    # H networks
    {'params': [H_network[0].bias]},
    {'params': [H_network[2].bias]},
    {'params': [H_network[4].bias]},
    {'params': [H_network[6].bias]},
    # C networks
    {'params': [C_network[0].bias]},
    {'params': [C_network[2].bias]},
    {'params': [C_network[4].bias]},
    {'params': [C_network[6].bias]},
    # N networks
    {'params': [N_network[0].bias]},
    {'params': [N_network[2].bias]},
    {'params': [N_network[4].bias]},
    {'params': [N_network[6].bias]},
    # O networks
    {'params': [O_network[0].bias]},
    {'params': [O_network[2].bias]},
    {'params': [O_network[4].bias]},
    {'params': [O_network[6].bias]},
], lr=1e-3)

AdamW_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(AdamW, factor=0.5, patience=100, threshold=0)
SGD_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(SGD, factor=0.5, patience=100, threshold=0)
181
182
183
184
185

###############################################################################
# This part of the code is also the same
latest_checkpoint = 'force-training-latest.pt'

186
187
188
189
190
191
192
193
194
###############################################################################
# Resume training from previously saved checkpoints:
if os.path.isfile(latest_checkpoint):
    checkpoint = torch.load(latest_checkpoint)
    nn.load_state_dict(checkpoint['nn'])
    AdamW.load_state_dict(checkpoint['AdamW'])
    SGD.load_state_dict(checkpoint['SGD'])
    AdamW_scheduler.load_state_dict(checkpoint['AdamW_scheduler'])
    SGD_scheduler.load_state_dict(checkpoint['SGD_scheduler'])
195

196
197
198
199
200
###############################################################################
# During training, we need to validate on validation set and if validation error
# is better than the best, then save the new best model to a checkpoint


201
202
203
204
205
def validate():
    # run validation
    mse_sum = torch.nn.MSELoss(reduction='sum')
    total_mse = 0.0
    count = 0
206
207
208
209
210
    for properties in validation:
        species = properties['species'].to(device)
        coordinates = properties['coordinates'].to(device).float()
        true_energies = properties['energies'].to(device).float()
        _, predicted_energies = model((species, coordinates))
211
212
        total_mse += mse_sum(predicted_energies, true_energies).item()
        count += predicted_energies.shape[0]
Ignacio Pickering's avatar
Ignacio Pickering committed
213
    return hartree2kcalmol(math.sqrt(total_mse / count))
214
215
216


###############################################################################
217
# We will also use TensorBoard to visualize our training process
218
219
220
221
tensorboard = torch.utils.tensorboard.SummaryWriter()

###############################################################################
# In the training loop, we need to compute force, and loss for forces
222
223
224
mse = torch.nn.MSELoss(reduction='none')

print("training starting from epoch", AdamW_scheduler.last_epoch + 1)
Gao, Xiang's avatar
Gao, Xiang committed
225
226
227
# We only train 3 epoches here in able to generate the docs quickly.
# Real training should take much more than 3 epoches.
max_epochs = 3
228
early_stopping_learning_rate = 1.0E-5
229
force_coefficient = 0.1  # controls the importance of energy loss vs force loss
230
231
best_model_checkpoint = 'force-training-best.pt'

232
for _ in range(AdamW_scheduler.last_epoch + 1, max_epochs):
233
    rmse = validate()
234
    print('RMSE:', rmse, 'at epoch', AdamW_scheduler.last_epoch + 1)
235

236
    learning_rate = AdamW.param_groups[0]['lr']
237
238
239
240
241

    if learning_rate < early_stopping_learning_rate:
        break

    # checkpoint
242
    if AdamW_scheduler.is_better(rmse, AdamW_scheduler.best):
243
244
        torch.save(nn.state_dict(), best_model_checkpoint)

245
246
247
248
249
250
    AdamW_scheduler.step(rmse)
    SGD_scheduler.step(rmse)

    tensorboard.add_scalar('validation_rmse', rmse, AdamW_scheduler.last_epoch)
    tensorboard.add_scalar('best_validation_rmse', AdamW_scheduler.best, AdamW_scheduler.last_epoch)
    tensorboard.add_scalar('learning_rate', learning_rate, AdamW_scheduler.last_epoch)
251
252
253

    # Besides being stored in x, species and coordinates are also stored in y.
    # So here, for simplicity, we just ignore the x and use y for everything.
254
    for i, properties in tqdm.tqdm(
255
256
257
258
        enumerate(training),
        total=len(training),
        desc="epoch {}".format(AdamW_scheduler.last_epoch)
    ):
259
260
261
262
263
264
265
266
267
268
269
270
271
        species = properties['species'].to(device)
        coordinates = properties['coordinates'].to(device).float().requires_grad_(True)
        true_energies = properties['energies'].to(device).float()
        true_forces = properties['forces'].to(device).float()
        num_atoms = (species >= 0).sum(dim=1, dtype=true_energies.dtype)
        _, predicted_energies = model((species, coordinates))

        # We can use torch.autograd.grad to compute force. Remember to
        # create graph so that the loss of the force can contribute to
        # the gradient of parameters, and also to retain graph so that
        # we can backward through it a second time when computing gradient
        # w.r.t. parameters.
        forces = -torch.autograd.grad(predicted_energies.sum(), coordinates, create_graph=True, retain_graph=True)[0]
272
273

        # Now the total loss has two parts, energy loss and force loss
274
        energy_loss = (mse(predicted_energies, true_energies) / num_atoms.sqrt()).mean()
275
        force_loss = (mse(true_forces, forces).sum(dim=(1, 2)) / num_atoms).mean()
276
277
        loss = energy_loss + force_coefficient * force_loss

278
279
        AdamW.zero_grad()
        SGD.zero_grad()
280
        loss.backward()
281
282
        AdamW.step()
        SGD.step()
283
284

        # write current batch loss to TensorBoard
285
        tensorboard.add_scalar('batch_loss', loss, AdamW_scheduler.last_epoch * len(training) + i)
286
287
288

    torch.save({
        'nn': nn.state_dict(),
289
290
291
292
        'AdamW': AdamW.state_dict(),
        'SGD': SGD.state_dict(),
        'AdamW_scheduler': AdamW_scheduler.state_dict(),
        'SGD_scheduler': SGD_scheduler.state_dict(),
293
    }, latest_checkpoint)