nnp_training_force.py 11.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# -*- coding: utf-8 -*-
"""
.. _force-training-example:

Train Neural Network Potential To Both Energies and Forces
==========================================================

We have seen how to train a neural network potential by manually writing
training loop in :ref:`training-example`. This tutorial shows how to modify
that script to train to force.
"""

###############################################################################
# Most part of the script are the same as :ref:`training-example`, we will omit
# the comments for these parts. Please refer to :ref:`training-example` for more
# information
17

18
19
20
21
22
23
24
import torch
import torchani
import os
import math
import torch.utils.tensorboard
import tqdm

Ignacio Pickering's avatar
Ignacio Pickering committed
25
26
27
# helper function to convert energy unit from Hartree to kcal/mol
from torchani.units import hartree2kcalmol

28
29
30
31
32
33
34
35
36
37
38
39
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

Rcr = 5.2000e+00
Rca = 3.5000e+00
EtaR = torch.tensor([1.6000000e+01], device=device)
ShfR = torch.tensor([9.0000000e-01, 1.1687500e+00, 1.4375000e+00, 1.7062500e+00, 1.9750000e+00, 2.2437500e+00, 2.5125000e+00, 2.7812500e+00, 3.0500000e+00, 3.3187500e+00, 3.5875000e+00, 3.8562500e+00, 4.1250000e+00, 4.3937500e+00, 4.6625000e+00, 4.9312500e+00], device=device)
Zeta = torch.tensor([3.2000000e+01], device=device)
ShfZ = torch.tensor([1.9634954e-01, 5.8904862e-01, 9.8174770e-01, 1.3744468e+00, 1.7671459e+00, 2.1598449e+00, 2.5525440e+00, 2.9452431e+00], device=device)
EtaA = torch.tensor([8.0000000e+00], device=device)
ShfA = torch.tensor([9.0000000e-01, 1.5500000e+00, 2.2000000e+00, 2.8500000e+00], device=device)
num_species = 4
aev_computer = torchani.AEVComputer(Rcr, Rca, EtaR, ShfR, EtaA, Zeta, ShfA, ShfZ, num_species)
40
energy_shifter = torchani.utils.EnergyShifter(None)
41
species_to_tensor = torchani.utils.ChemicalSymbolsToInts(['H', 'C', 'N', 'O'])
42
43
44
45
46
47


try:
    path = os.path.dirname(os.path.realpath(__file__))
except NameError:
    path = os.getcwd()
48
dspath = os.path.join(path, '../dataset/ani-1x/sample.h5')
49
50
51

batch_size = 2560

52
53
54
55
56
dataset = torchani.data.load(dspath).subtract_self_energies(energy_shifter).species_to_indices().shuffle()
size = len(dataset)
training, validation = dataset.split(int(0.8 * size), None)
training = training.collate(batch_size).cache()
validation = validation.collate(batch_size).cache()
57

58
59
print('Self atomic energies: ', energy_shifter.self_energies)

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
###############################################################################
# The code to define networks, optimizers, are mostly the same

H_network = torch.nn.Sequential(
    torch.nn.Linear(384, 160),
    torch.nn.CELU(0.1),
    torch.nn.Linear(160, 128),
    torch.nn.CELU(0.1),
    torch.nn.Linear(128, 96),
    torch.nn.CELU(0.1),
    torch.nn.Linear(96, 1)
)

C_network = torch.nn.Sequential(
    torch.nn.Linear(384, 144),
    torch.nn.CELU(0.1),
    torch.nn.Linear(144, 112),
    torch.nn.CELU(0.1),
    torch.nn.Linear(112, 96),
    torch.nn.CELU(0.1),
    torch.nn.Linear(96, 1)
)

N_network = torch.nn.Sequential(
    torch.nn.Linear(384, 128),
    torch.nn.CELU(0.1),
    torch.nn.Linear(128, 112),
    torch.nn.CELU(0.1),
    torch.nn.Linear(112, 96),
    torch.nn.CELU(0.1),
    torch.nn.Linear(96, 1)
)

O_network = torch.nn.Sequential(
    torch.nn.Linear(384, 128),
    torch.nn.CELU(0.1),
    torch.nn.Linear(128, 112),
    torch.nn.CELU(0.1),
    torch.nn.Linear(112, 96),
    torch.nn.CELU(0.1),
    torch.nn.Linear(96, 1)
)

nn = torchani.ANIModel([H_network, C_network, N_network, O_network])
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
print(nn)

###############################################################################
# Initialize the weights and biases.
#
# .. note::
#   Pytorch default initialization for the weights and biases in linear layers
#   is Kaiming uniform. See: `TORCH.NN.MODULES.LINEAR`_
#   We initialize the weights similarly but from the normal distribution.
#   The biases were initialized to zero.
#
# .. _TORCH.NN.MODULES.LINEAR:
#   https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html#Linear


def init_params(m):
    if isinstance(m, torch.nn.Linear):
        torch.nn.init.kaiming_normal_(m.weight, a=1.0)
        torch.nn.init.zeros_(m.bias)


nn.apply(init_params)

###############################################################################
# Let's now create a pipeline of AEV Computer --> Neural Networks.
129
model = torchani.nn.Sequential(aev_computer, nn).to(device)
130
131

###############################################################################
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# Here we will use Adam with weight decay for the weights and Stochastic Gradient
# Descent for biases.

AdamW = torchani.optim.AdamW([
    # H networks
    {'params': [H_network[0].weight]},
    {'params': [H_network[2].weight], 'weight_decay': 0.00001},
    {'params': [H_network[4].weight], 'weight_decay': 0.000001},
    {'params': [H_network[6].weight]},
    # C networks
    {'params': [C_network[0].weight]},
    {'params': [C_network[2].weight], 'weight_decay': 0.00001},
    {'params': [C_network[4].weight], 'weight_decay': 0.000001},
    {'params': [C_network[6].weight]},
    # N networks
    {'params': [N_network[0].weight]},
    {'params': [N_network[2].weight], 'weight_decay': 0.00001},
    {'params': [N_network[4].weight], 'weight_decay': 0.000001},
    {'params': [N_network[6].weight]},
    # O networks
    {'params': [O_network[0].weight]},
    {'params': [O_network[2].weight], 'weight_decay': 0.00001},
    {'params': [O_network[4].weight], 'weight_decay': 0.000001},
    {'params': [O_network[6].weight]},
])

SGD = torch.optim.SGD([
    # H networks
    {'params': [H_network[0].bias]},
    {'params': [H_network[2].bias]},
    {'params': [H_network[4].bias]},
    {'params': [H_network[6].bias]},
    # C networks
    {'params': [C_network[0].bias]},
    {'params': [C_network[2].bias]},
    {'params': [C_network[4].bias]},
    {'params': [C_network[6].bias]},
    # N networks
    {'params': [N_network[0].bias]},
    {'params': [N_network[2].bias]},
    {'params': [N_network[4].bias]},
    {'params': [N_network[6].bias]},
    # O networks
    {'params': [O_network[0].bias]},
    {'params': [O_network[2].bias]},
    {'params': [O_network[4].bias]},
    {'params': [O_network[6].bias]},
], lr=1e-3)

AdamW_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(AdamW, factor=0.5, patience=100, threshold=0)
SGD_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(SGD, factor=0.5, patience=100, threshold=0)
183
184
185
186
187

###############################################################################
# This part of the code is also the same
latest_checkpoint = 'force-training-latest.pt'

188
189
190
191
192
193
194
195
196
###############################################################################
# Resume training from previously saved checkpoints:
if os.path.isfile(latest_checkpoint):
    checkpoint = torch.load(latest_checkpoint)
    nn.load_state_dict(checkpoint['nn'])
    AdamW.load_state_dict(checkpoint['AdamW'])
    SGD.load_state_dict(checkpoint['SGD'])
    AdamW_scheduler.load_state_dict(checkpoint['AdamW_scheduler'])
    SGD_scheduler.load_state_dict(checkpoint['SGD_scheduler'])
197

198
199
200
201
202
###############################################################################
# During training, we need to validate on validation set and if validation error
# is better than the best, then save the new best model to a checkpoint


203
204
205
206
207
def validate():
    # run validation
    mse_sum = torch.nn.MSELoss(reduction='sum')
    total_mse = 0.0
    count = 0
208
209
210
211
212
    for properties in validation:
        species = properties['species'].to(device)
        coordinates = properties['coordinates'].to(device).float()
        true_energies = properties['energies'].to(device).float()
        _, predicted_energies = model((species, coordinates))
213
214
        total_mse += mse_sum(predicted_energies, true_energies).item()
        count += predicted_energies.shape[0]
Ignacio Pickering's avatar
Ignacio Pickering committed
215
    return hartree2kcalmol(math.sqrt(total_mse / count))
216
217
218


###############################################################################
219
# We will also use TensorBoard to visualize our training process
220
221
222
223
tensorboard = torch.utils.tensorboard.SummaryWriter()

###############################################################################
# In the training loop, we need to compute force, and loss for forces
224
225
226
mse = torch.nn.MSELoss(reduction='none')

print("training starting from epoch", AdamW_scheduler.last_epoch + 1)
Gao, Xiang's avatar
Gao, Xiang committed
227
228
229
# We only train 3 epoches here in able to generate the docs quickly.
# Real training should take much more than 3 epoches.
max_epochs = 3
230
early_stopping_learning_rate = 1.0E-5
231
force_coefficient = 0.1  # controls the importance of energy loss vs force loss
232
233
best_model_checkpoint = 'force-training-best.pt'

234
for _ in range(AdamW_scheduler.last_epoch + 1, max_epochs):
235
    rmse = validate()
236
    print('RMSE:', rmse, 'at epoch', AdamW_scheduler.last_epoch + 1)
237

238
    learning_rate = AdamW.param_groups[0]['lr']
239
240
241
242
243

    if learning_rate < early_stopping_learning_rate:
        break

    # checkpoint
244
    if AdamW_scheduler.is_better(rmse, AdamW_scheduler.best):
245
246
        torch.save(nn.state_dict(), best_model_checkpoint)

247
248
249
250
251
252
    AdamW_scheduler.step(rmse)
    SGD_scheduler.step(rmse)

    tensorboard.add_scalar('validation_rmse', rmse, AdamW_scheduler.last_epoch)
    tensorboard.add_scalar('best_validation_rmse', AdamW_scheduler.best, AdamW_scheduler.last_epoch)
    tensorboard.add_scalar('learning_rate', learning_rate, AdamW_scheduler.last_epoch)
253
254
255

    # Besides being stored in x, species and coordinates are also stored in y.
    # So here, for simplicity, we just ignore the x and use y for everything.
256
    for i, properties in tqdm.tqdm(
257
258
259
260
        enumerate(training),
        total=len(training),
        desc="epoch {}".format(AdamW_scheduler.last_epoch)
    ):
261
262
263
264
265
266
267
268
269
270
271
272
273
        species = properties['species'].to(device)
        coordinates = properties['coordinates'].to(device).float().requires_grad_(True)
        true_energies = properties['energies'].to(device).float()
        true_forces = properties['forces'].to(device).float()
        num_atoms = (species >= 0).sum(dim=1, dtype=true_energies.dtype)
        _, predicted_energies = model((species, coordinates))

        # We can use torch.autograd.grad to compute force. Remember to
        # create graph so that the loss of the force can contribute to
        # the gradient of parameters, and also to retain graph so that
        # we can backward through it a second time when computing gradient
        # w.r.t. parameters.
        forces = -torch.autograd.grad(predicted_energies.sum(), coordinates, create_graph=True, retain_graph=True)[0]
274
275

        # Now the total loss has two parts, energy loss and force loss
276
        energy_loss = (mse(predicted_energies, true_energies) / num_atoms.sqrt()).mean()
277
        force_loss = (mse(true_forces, forces).sum(dim=(1, 2)) / num_atoms).mean()
278
279
        loss = energy_loss + force_coefficient * force_loss

280
281
        AdamW.zero_grad()
        SGD.zero_grad()
282
        loss.backward()
283
284
        AdamW.step()
        SGD.step()
285
286

        # write current batch loss to TensorBoard
287
        tensorboard.add_scalar('batch_loss', loss, AdamW_scheduler.last_epoch * len(training) + i)
288
289
290

    torch.save({
        'nn': nn.state_dict(),
291
292
293
294
        'AdamW': AdamW.state_dict(),
        'SGD': SGD.state_dict(),
        'AdamW_scheduler': AdamW_scheduler.state_dict(),
        'SGD_scheduler': SGD_scheduler.state_dict(),
295
    }, latest_checkpoint)