test_ensemble.py 1.83 KB
Newer Older
1
2
3
4
5
6
7
import unittest
import pickle
import os
import torch
import torchani

path = os.path.dirname(os.path.realpath(__file__))
8
N = 10
9
10
11
12
13
14
15


class TestEnsemble(unittest.TestCase):

    def setUp(self):
        self.tol = 1e-5
        self.conformations = 20
16
17
18
19
        ani1x = torchani.models.ANI1x()
        self.aev_computer = ani1x.aev_computer
        self.model_iterator = ani1x.neural_networks
        self.ensemble = torchani.nn.Sequential(self.aev_computer, self.model_iterator)
20
21

    def _test_molecule(self, coordinates, species):
22
        model_list = [torchani.nn.Sequential(self.aev_computer, m) for m in self.model_iterator]
Gao, Xiang's avatar
Gao, Xiang committed
23
        coordinates.requires_grad_(True)
24
        _, energy1 = self.ensemble((species, coordinates))
Gao, Xiang's avatar
Gao, Xiang committed
25
        force1 = torch.autograd.grad(energy1.sum(), coordinates)[0]
26
27
        energy2 = [m((species, coordinates))[1] for m in model_list]
        energy2 = sum(energy2) / len(model_list)
Gao, Xiang's avatar
Gao, Xiang committed
28
        force2 = torch.autograd.grad(energy2.sum(), coordinates)[0]
29
30
31
32
33
34
35
        energy_diff = (energy1 - energy2).abs().max().item()
        force_diff = (force1 - force2).abs().max().item()
        self.assertLess(energy_diff, self.tol)
        self.assertLess(force_diff, self.tol)

    def testGDB(self):
        for i in range(N):
36
            datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i))
37
38
            with open(datafile, 'rb') as f:
                coordinates, species, _, _, _, _ = pickle.load(f)
39
40
                coordinates = torch.from_numpy(coordinates)
                species = torch.from_numpy(species)
41
42
43
                self._test_molecule(coordinates, species)


44
45
46
47
48
49
50
51
class TestEnsembleJIT(TestEnsemble):

    def setUp(self):
        super().setUp()
        self.ensemble = torchani.nn.Sequential(self.aev_computer, self.model_iterator)
        self.ensemble = torch.jit.script(self.ensemble)


52
53
if __name__ == '__main__':
    unittest.main()