import unittest import pickle import os import torch import torchani path = os.path.dirname(os.path.realpath(__file__)) N = 10 class TestEnsemble(unittest.TestCase): def setUp(self): self.tol = 1e-5 self.conformations = 20 ani1x = torchani.models.ANI1x() self.aev_computer = ani1x.aev_computer self.model_iterator = ani1x.neural_networks self.ensemble = torchani.nn.Sequential(self.aev_computer, self.model_iterator) def _test_molecule(self, coordinates, species): model_list = [torchani.nn.Sequential(self.aev_computer, m) for m in self.model_iterator] coordinates.requires_grad_(True) _, energy1 = self.ensemble((species, coordinates)) force1 = torch.autograd.grad(energy1.sum(), coordinates)[0] energy2 = [m((species, coordinates))[1] for m in model_list] energy2 = sum(energy2) / len(model_list) force2 = torch.autograd.grad(energy2.sum(), coordinates)[0] energy_diff = (energy1 - energy2).abs().max().item() force_diff = (force1 - force2).abs().max().item() self.assertLess(energy_diff, self.tol) self.assertLess(force_diff, self.tol) def testGDB(self): for i in range(N): datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i)) with open(datafile, 'rb') as f: coordinates, species, _, _, _, _ = pickle.load(f) coordinates = torch.from_numpy(coordinates) species = torch.from_numpy(species) self._test_molecule(coordinates, species) class TestEnsembleJIT(TestEnsemble): def setUp(self): super().setUp() self.ensemble = torchani.nn.Sequential(self.aev_computer, self.model_iterator) self.ensemble = torch.jit.script(self.ensemble) if __name__ == '__main__': unittest.main()